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ABSTRACT

This study examines the fresh and hardened characteristics of metakaolin-
sawdust geopolymer concrete (MSGC) and develops models to predict its
compressive strength. MSGC mixes were prepared with sawdust replacing
fine aggregates at levels from 0% to 40%. Evaluations covered
workability, setting time, bulk density, water absorption, and compressive
strength, alongside artificial intelligence-based prediction. Increasing
sawdust levels led to marked reductions in slump (172 mm at 0% to 0 mm
at 30-40%) and substantial delays in initial setting time (53 minutes at
0% to 242 minutes at 40%). Bulk density fell from 2350 kg/m? to 1400
kg/m?3 while water absorption rose sharply from 3.5% to 25% as sawdust
content increased. MSGC compressive strength decreased from 36.1 MPa
(0%) to 3.8 MPa (40%) at 28 days. The control mix outperformed ordinary
Portland cement concrete (OPC), and MSGC with up to 10% sawdust
remained competitive (28.5 MPa). Predictive models developed using
Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference
Systems (ANFIS), and Gene Expression Programming (GEP) showed the
ANN model provided best accuracy, with R? = 0.9423. Overall, findings
confirm MSGC'’s potential as a sustainable alternative for construction.

© 2025 Journal of Management and Engineering Sciences

1. INTRODUCTION

Geopolymer concrete

cement, GPC utilizes industrial by-products such
as fly ash, ground granulated blast furnace slag

has gained (GGBFS), rice husk ash, and metakaolin as

prominence as an environmentally friendly and binders, significantly lowering the environmental
sustainable alternative to conventional cement- impact of concrete production [1,2]. The
based concrete due to its reduced carbon compressive strength of geopolymer concrete is
footprint. Instead of using ordinary Portland a crucial parameter for its use in structural

184


http://www.jmes.aspur.rs/
https://orcid.org/0000-0001-6470-8671

Hyginus Obinna Ozioko et al, Journal of Management and Engineering Sciences Vol. 2, Iss. 4 (2025) 184-204

applications, and its prediction is essential for
optimizing mix designs and improving the
sustainability of construction materials.

Among various alternative materials for
geopolymer concrete, metakaolin and sawdust
are gaining attention. Metakaolin, a kaolin-based
material, is known for its high reactivity, which
enhances the mechanical properties of
geopolymer concrete [1]. Sawdust, a widely
available waste material, has also been used in
geopolymer concrete, often as a replacement for
natural aggregates. Sawdust-based geopolymer
concrete exhibits improved thermal insulation
and sound absorption properties, making it
suitable for lightweight construction applications
[3]. However, the inclusion of sawdust can reduce
the compressive strength of the concrete,
especially at higher replacement levels [4].

The combination of metakaolin and sawdust in
geopolymer concrete can offer a dual benefit of
improved strength and sustainability. Metakaolin
acts as a strong binder, while sawdust
contributes to the reduction of environmental
impact by replacing natural aggregates and
enhancing the material's insulation properties
[3]. Therefore, the prediction of compressive
strength in such geopolymer mixes is vital to
ensure optimal performance and structural
reliability.

Recent studies have employed machine learning
models to predict the compressive strength of
geopolymer concrete. For instance, Support
Vector Regression (SVR) and Grey Wolf
Optimization (GWO) models have been used to
predict the strength of GGBFS-based geopolymer
concrete [5]. Additionally, Artificial Neural
Networks (ANNs) have shown potential in
predicting the compressive strength of fly ash-
based geopolymer concrete [6]. These predictive
models can incorporate various factors, such as
the ratio of alkaline liquids, curing conditions,
and binder contents, to forecast the concrete's
strength with high accuracy.

The present study aims to develop predictive
models for the compressive strength of
metakaolin-saw dust geopolymer concrete by
leveraging machine learning techniques. By
analyzing the impact of various mix design
parameters, including the content of metakaolin
and sawdust, and curing conditions, the study

seeks to establish a reliable model for predicting
the compressive strength of these eco-efficient
concretes, thereby contributing to sustainable
construction practices [7].

This work aligns with the growing need to
optimize the use of industrial by-products in
construction materials while ensuring that the
mechanical properties of the resulting concrete
meet the required standards for structural
integrity [1,2]. Through predictive analysis, this
study aims to improve the formulation of
geopolymer concrete mixes, thus advancing the
goal of sustainable construction with reduced
environmental impact.

2. MATERIALS AND METHOD

Fig. 1presents the study’s methodology, from
material preparation and experimental testing to
machine learning model development and
evaluation using R? RMSE, MSE, and MAE.
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Fig. 1. Methodology Flow Chart.
2.1 Metakaolin and Sawdust Preparation

Metakaolin was procured from trusted suppliers
in Ahiaeke Market, Abia State, ensuring it was
free from impurities such as quartz, mica, and
other minerals that could compromise its
pozzolanic reactivity. To enhance surface area
and improve reactivity during
geopolymerization, the metakaolin was ground
into a fine powder, targeting a fineness of 325
mesh (45 microns) in line with ASTM (618
requirements for pozzolanic materials. Sawdust,
on the other hand, was collected from Ahiaeke
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Building Material Market, carefully selected to be
free of oils, resins, and paints that could interfere
with the mix. To ensure consistency, the sawdust
was oven-dried at 100-110°C for 24 hours until a
constant weight was reached, thereby
eliminating excess moisture that could affect the
water-to-solid ratio. The dried sawdust was
sieved through a 1.18 mm standard sieve to
achieve uniform particle size distribution,
conforming to ASTM D3164-09, and prepared for
blending with the binder.

2.2 Alkaline Activators: Sodium Hydroxide
and Sodium Silicate Solutions

The alkaline activators, sodium hydroxide
(NaOH) and sodium silicate (Na,SiOs), were
prepared at the Chemistry Laboratory of Michael
Okpara University of Agriculture, Umudike, to
serve as the primary agents for initiating
geopolymerization. Sodium hydroxide flakes
were dissolved in distilled water to obtain a
concentrated solution of 8-16 M, prepared
cautiously due to its caustic nature and in
compliance with [8]. Sodium silicate, also known
as water glass, was prepared with an Si0,/Na,0
ratio between 1.5 and 3.0 to enhance bond
formation within the polymeric matrix. The
standard mixing ratio of sodium silicate to
sodium hydroxide was maintained at
approximately 2.5:1, ensuring optimum balance
between strength and workability. The prepared
solutions were combined immediately before
mixing with the dry ingredients to maximize
reactivity. All preparation procedures conformed
to [9] to guarantee uniformity, safety, and
consistency in the geopolymerization process.

2.3 Aggregates and Mixing Water

Both fine and coarse aggregates were selected to
meet the necessary standards for strength,
durability, and grading. Fine aggregates were
sourced from Imo River and confirmed to be well-
graded, free from clay, silt, and organic matter, in
accordance with [10]. Coarse aggregates,
consisting of crushed granite obtained from
Ishiagu Quarry in Ebonyi State, were graded
within 5-20 mm and tested for hardness, texture,
and moisture content in line with [11]. These
aggregates provided the essential bulk and
stability needed for the geopolymer concrete.
Additionally, clean borehole water was obtained
from the College of Engineering and Engineering
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Technology, MOUAU. The water was clear,
odorless, and colorless, meeting the quality
requirements for mixing concrete. Together, the
fine aggregates, coarse aggregates, and water
formed the structural backbone of the mix,
complementing the binder and activators to
produce durable and workable geopolymer
concrete.

2.4 Tests on Metakaolin-Sawdust
Geopolymer Concrete

A series of tests were carried out to evaluate the
fresh and hardened properties of the
metakaolin-sawdust geopolymer concrete in
accordance with relevant standards. The
compressive strength test, conducted using
standard cube specimens in line with [12],
assessed the concrete’s ability to withstand axial
loads after curing for 7, 14, and 28 days. This test
provided crucial data on the strength
development and structural reliability of the mix.
To complement this, the workability of fresh
concrete was examined using the slump test as
prescribed by [13]. The slump values offered
insight into the ease of placement, compaction,
and handling of the fresh geopolymer concrete.

Durability and quality indicators were further
investigated through density and void content
tests in accordance with [14]. These tests
determined the bulk density, water absorption,
and volume of voids, which are essential
parameters for predicting long-term
performance and resistance to environmental
attack. Additionally, the setting time of the
concrete was measured using a Vicat apparatus
following [15]. This provided information on
both initial and final setting times, which are
critical for understanding the hardening behavior
and workability duration of the mix. Collectively,
the tests offered a comprehensive evaluation of
the mechanical, fresh state, and durability
properties of the  metakaolin-sawdust
geopolymer concrete, ensuring that the material
meets performance expectations for structural
and sustainable construction applications.

2.5 Methodology for Predicting Compressive
Strength of Geopolymer Concrete using
Al Models

This study employs advanced Artificial
Intelligence (Al) techniques, specifically Artificial
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Neural Networks (ANN), Adaptive Neuro-Fuzzy
Inference Systems (ANFIS), and Gene Expression
Programming (GEP), to predict the compressive
strength of geopolymer concrete. The
methodology encompasses data collection and
preprocessing, model construction and training,
performance assessment, and visualization of
results. The dataset used in this study consists of
44 experimental observations that were
manually compiled. This compilation focused on
identifying key parameters that influence the
compressive strength of geopolymer concrete.
The selected input parameters (X) include
Metakaolin content (MK, kg/m?®), Sawdust
Replacement (SD, %), Slump (S, mm), and Curing
Days (CD, days). The output parameter (Y), which
is the primary focus of the study, is Compressive
Strength (CS, MPa).

Data Cleaning

Prior to analysis, the dataset was inspected for
missing values or outliers. For this specific
dataset, all values were assumed to be complete
and accurate, thus no explicit cleaning operations
such as imputation or outlier removal were
performed.

Data Normalization

To ensure that all input and output parameters
contribute equally to the model training and to
improve the convergence and performance of the
Al algorithms, the data were normalized to a
range of [0, 1]. The Min-Max scaling method was
applied using Eq. 1.

For an individual data point x; in a feature column
X:

Xi —x.
— min (1)

xnorm,i
Xmax — Xmin

Where x,,;, and x,,,, are the minimum and
maximum values of the respective feature in the
entire dataset. This transformation was applied
to both the input features (X) and the output
target (Y). The normalized input and output
matrices are denoted as X,orm and  Ynorm
respectively.

Data Splitting

The normalized dataset was divided into three
subsets for model development and evaluation.

The training set, comprising 70% of the data, was
used for model learning. The validation set, with
15% of the data, served to tune model hyper-
parameters and prevent overfitting during
training, particularly for ANNs. The testing set,
also 15% of the data, was reserved for an
unbiased evaluation of the final model's
performance on new data. Random partitioning
ensured representative subsets. Indices for these
sets are trainInd, vallnd, and testInd.

(xnorm,i' ynorm,i)' i=12,..,N (2)

Where x,0rm,; and Yporm; are column vectors
representing the i —th normalized input and
output samples, respectively.

The splitting process can be formally expressed
as:

Data Points = {(X0rmis i » Ynorm,i) | i = 1,...,N}  (3)
Training Set = {(X,0rm,i» i Ynorm,i) | i € trainind } (4)
Validation Set = {(X0rm.i» & Ynormi) | i € vallnd } (5)
Testing Set = {(Xporm,ir b Ynorm,i) | i € testind}  (6)

Artificial Neural Networks (ANN)

A feed-forward  backpropagation =~ ANN
architecture was employed for compressive
strength prediction. This type of network
consists of an input layer, one or more hidden
layers, and an output layer.

e Architecture: A single hidden layer with 10
neurons was selected after experimentation.
The network structure can be represented as
4-10-1, corresponding to 4 input features, 10
hidden neurons, and 1 output (compressive
strength) and 1 output (compressive
strength).

e Activation Functions: The tansig (hyperbolic
tangent sigmoid) transfer function was used
for the hidden layer, providing non-linearity
crucial for learning complex relationships. A
purelin (linear) transfer function was used
for the output layer, suitable for regression
tasks.

e Hidden Layer Output: For a neuron j in the
hidden layer with inputs x; from the input
layer:

hj _ tanh TP wiD x; + b} (7)
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Where njppyts= 4 is the number of input features,

w;;Pare the weights connecting input i to hidden

neuron j, and bj(l) is the bias for hidden neuron j.
e Qutput Layer Output: For the output neuron:

— Nhidden 2) 2)
ypred,norm - Zi:l Wj hj +b (8)

Where npiggen = 10 the number of hidden

neurons is, w;'® are the weights connecting

hidden neuron j to the output, and b*® is the bias
for the output neuron.

e Training  Algorithm: The Bayesian
Regularization backpropagation algorithm
(trainbr) was utilized. This algorithm is
robust for small to medium-sized datasets,
often leading to better generalization by
preventing overfitting through
regularization. It updates weights and biases
according to Levenberg-Marquardt
optimization and minimizes a combination of

squared errors and weights. The
performance function minimized by
trainbr is:
F(w) = BED(w) + aEw(w) (&)
Where:
ED(W) = legiriain(ynormk - ypredicted,normk)z (10)
Ew(w) = X;w{ (11)

e Training Parameters: The model training
process was configured with the following
key parameters: a maximum limit of 1000
epochs was set for the training iterations. The
performance objective for the model was
defined by a Mean Squared Error (MSE) goal
of 1x1073.

Adaptive Neuro-Fuzzy
(ANFIS)

Inference System

ANFIS functions as a hybrid intelligent system by
combining the adaptive learning capabilities of
Artificial Neural Networks (ANNs) with the rule-
based interpretability of Fuzzy Inference Systems
(FIS). For this study, a first-order Sugeno-type FIS
was implemented. An initial FIS structure was
generated from the training data using the grid
partitioning method, specifically via the genfis1
function in MATLAB. The ANFIS model was
trained for 100 epochs.
e Membership Functions (MFs): For each input
variable, three membership functions were
assigned. Gaussian bell-shaped membership
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functions (gbellmf ) were selected as the
input MF type due to their smooth and
differentiable =~ properties, which are
beneficial for gradient-based learning
algorithms. The generalized bell-shaped
membership function for a given input x and
parameters a, b, and c is defined as:
1

|x—c|2b

u(x;a,b,c) = (12)

Here, a controls the width, b controls the slope,

and C defines the center of the membership

function.

e Qutput MF Type: Linear membership
functions (linear) were used, meaning the
output of each rule is a linear combination of
the inputs. For a rule k:

fk = pkMK + gkSD + rkS + skCD + tk (13)

Where pk, gk, rk,sk,andtk are consequent

parameters optimized during training.

e Training Algorithm: The ANFIS function
employs a hybrid learning algorithm. This
algorithm combines the least-squares
method to optimize the consequent
parameters and the gradient descent method
to optimize the premise parameters
(Membership Function parameters).

o Rule Firing Strength Calculation

For a given set of normalized inputs X,,rm =

[MK1orm» SDnorms Snorm» CDnorm] » the  firing

strength of each rule k, denoted as wy, is

computed as the product of the membership
degrees of the inputs to their respective
membership functions:

wy = UMK, k(MK orm) X uSD, k(SDyorm) X 1S, k
(Snorm) X HCD, k(CDyopm) (14)

o Normalized Firing Strength
The normalized firing strength @, for each rule
K is calculated by dividing its firing strength by
the sum of the firing strengths of all rules:
Tk = s (15)

rules ,,, .
X, wy

Where N, IS the total number of fuzzy rules.

e Overall Output: The final ANFIS predicted
output, ¥, cqicteanorm, iS the weighted average
of the individual rule outputs:

y (16)

. N
predicted,norm = Zkg‘les ok .fk

Where fk is the output of rule k.
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Gene Expression Programming (GEP)

Gene Expression Programming (GEP) is an
evolutionary algorithm designed to discover
explicit mathematical expressions or computer
programs. In contrast to opaque models
generated by ANNs and ANFIS, GEP aims to
produce clear mathematical equations that
define the relationship between input and output
variables.

For model initialization, the GEP module
( gplearn. genetic. SymbolicRegressor ) in
Python was utilized to implement the GEP
algorithm. The population size for each
generation was set to 5000 individuals
(programs), and the evolutionary process
spanned 20 generations. A predefined function
set, including elementary = mathematical
operations such as addition (add), subtraction
(sub), multiplication (mul), division (div), square
root (sqrt), natural logarithm2 (log), absolute
value (abs), and negation (neg), was provided.
The GEP algorithm constructs expressions by
combining these functions with the input
variables. Mean Squared Error (MSE) served as
the fitness function, guiding the evolutionary
process by measuring model performance. A
parsimony coefficient of 0.01 was applied to
penalize overly complex models, thereby
promoting the evolution of simpler, more
interpretable expressions. GEP's evolutionary
process incorporates genetic operators like
mutation, recombination, and transposition to
refine programs across generations,
continuously improving their fitness by
minimizing MSE. The objective is to identify a
mathematical expression f (MK, SD,S,CD) such
that:

CSpredictea = (MK, SD, S, CD) a7

The final evolved equation represents the
outcome of this optimization process. The model
was trained using the normalized training data to
uncover the inherent mathematical relationship.

Evaluation Metrics
Model performance was quantitatively assessed

using widely accepted metrics as given by Ozioko
and Eze [16] and represented by Eqgs. 18-21.

Mean Squared Error (MSE):

MSE=~ 31 o(i - $)? (18)
Root Mean Squared Error (RMSE):
RMSE =\MSE (19)
Mean Absolute Error (MAE):
MAE = (3) Zioly: — i (20)

R-squared (R2):

= T o= 90?

R =1—
23 i —9)2

(21)
Where: y; represents the i-th actual (observed)
value, §; represents the i-th predicted value, y
represents the mean of the actual (observed)
values and N represents the total number of data
points.

3. RESULTS AND DISCUSSION
3.1 Material Characterization

The physical properties and gradation profiles of
the materials used are summarized in Table 1.
Metakaolin and sawdust exhibited low densities
(740 kg/m? and 215.3 kg/m?, respectively) and
high porosity, particularly sawdust, which
showed a water absorption of 31.2%. Granite and
sand displayed typical aggregate characteristics
with higher densities and lower moisture
contents. The particle size distribution curves
presented in Fig. 2 illustrate the grading behavior
of the materials. Granite showed a gap-graded
profile with a Coefficient of Uniformity (Cu) of
1.84 and Coefficient of Curvature (Cc) of 0.68,
indicating poor gradation. Sand, in contrast, was
well-graded with Cu and Cc values of 20.35 and
0.72, respectively. Metakaolin and sawdust,
though non-aggregates, exhibited moderate
gradation (Cu = 12.63 and 10.00), suggesting a
wide range of fine particles.

The weighing of metakaolin and sawdust prior to
mixing is shown in Fig. 3, highlighting the use of
an electronic balance for precise measurement.
This ensures consistency in mix design and
material batching. Properties of the alkaline
activators used in the geopolymer system are
detailed in Table 2. A 10 M NaOH solution and
commercial-grade sodium silicate (SiO,/Na,0O
ratio = 3.22) were combined in a 40:60 weight
ratio to facilitate effective geopolymerization.
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Table 1. Material Properties and Particle Size

Distribution.
Property | Metakaolin | Sawdust | Granite | Sand
5:;;2% 740.0 2153 | 2665.0 | 1652.4
Bulk
Density 980.1 139.0 1512.3 | 1548.7
(kg/m?)
igzsg; 252 0.62 268 | 259
Moisture
Content 0.5 8.1 0.3 1.5
(%)
Water
Absorption - 31.2 0.8 1.1
(%)
Particle Size Distribution (% Passing)
Sieve Size
20.0 mm - - 100.0 -
14.00mm _ _ 92.5 _
10.0 mm - - 89.5 _
6.3mm _ 55.4 _
4.75 mm - - 8.2 89.5
2.36 mm 92.6 94.8 1.3 74.7
1.18 mm 81.4 87.5 0.6 60.3
600 um 66.2 73.1 0.0 46.1
300 um 49.7 59.6 0.0 33.4
150 um 315 45.4 0.0 21.2
0.075 mm 9.3 258 - -
Pan

Table 2. Material Properties of Alkaline Activators.

Sodium . s
Property Hydroxide So%;\l}l;nssigu;ate
(NaOH) 2ons
. White pellets Viscous liquid
Physical Form (solid) (gel-like)
Concentration Commercial-
Used 10 M (molar) grade, 3.22
Si02/Na,O0 ratio
~1310 (10M
Density (kg/m?) solution at 1510
25°(C)
Specific Gravity 1.31 1.51
Viscosity @ 25°C - 400 - 600 mPa-s
pH (at 25°C) 13.5-14.0 ~11.3
~70 (in
Water Content (%) solution ~55
form)
Mixing Ratio
(NaOH:Na,SiO3 by 40:60 40:60
wt.)
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Fig. 2. Gradation Characteristics of the Materials.

Fig. 3. Metakaolin and Sawdust being measured.

3.2 Workability of Fresh Geopolymer
Concrete

The results presented in Table 3 consistently
show that an increase in sawdust replacement
percentage leads to a notable decrease in the
workability of fresh geopolymer concrete mixes.
The control mix (0% sawdust) exhibited a high
slump of 172mm, indicating excellent
flowability. As sawdust content increased, the
slump values progressively reduced, with mixes
containing 30% and 40% sawdust exhibiting zero
slump. This phenomenon is largely attributed to
the high-water absorption capacity of sawdust
(31.2%, as indicated in Table 2), which
significantly reduces the free water available for
lubrication within the mix. Furthermore, the
irregular, fibrous nature and relatively large
surface area of sawdust particles, even after
sieving to 1.18 mm as per the methodology, likely
increase the internal friction and inter-particle
resistance, thereby impeding the flow and
compaction of the fresh concrete.
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Table 3. Slump Test Results for Metakaolin-Sawdust
Geopolymer Concrete.

) Metakaolin | Sawdust | Slump Description
Mix ID o o of
%) (%) (mm) Workability
Control .
o 100 0 172 worﬁl{fktlili
SD) ty
Moderate-
(;PDZ- 6 4 164 high
workability
GPC- Moderate
SD7 93 7 155 workability
GPC- Moderate
SD10 >0 10 137 workability
Low-
ggfg 87 13 105 moderate
workability
GPC- Low
SD15 85 15 78 workability
GPC- Very low
SD20 % 20 56 workability
Extremely
SGéjgé 78 22 33 low
workability
GPC- Nearly no
SD25 75 25 14 e
GPC-
SD30 70 30 0 Zero slump
GPC-
SD40 60 40 0 Zero slump

These findings align with previous research on
the influence of sawdust on concrete workability.
For instance, Duan et al. [4] observed that
sawdust addition inversely influences the
workability of fly ash geopolymer paste.
Similarly, Oyedepo et al. [17] reported a decrease
in workability (slump values of 40 mm, 9 mm,
and 5mm for 0%, 25%, and 50% sawdust as
partial replacement for fine sand in OPC concrete,
respectively), which is consistent with the trend
observed in the present study. Although their
study used sawdust as a sand replacement in OPC
concrete, the underlying principle of sawdust's
high absorbency and irregular shape impacting
fresh properties holds true for geopolymer
systems. Onyechere et al. [18], in their review on
sawdust ash in concrete, also generally noted a
reduction in concrete workability as sawdust ash
content increases, reinforcing the idea that
sawdust-derived materials tend to absorb water
and stiffen the mix.

While the exact slump values vary between
studies due to differences in mix proportions,
binder types (geopolymer vs. OPC), sawdust
characteristics, and experimental procedures, the
general trend of reduced workability with
increased sawdust content is consistently
reported. The current study's observation of zero
slump at higher sawdust percentages (30% and
40%) underscores the significant challenge
sawdust poses to workability, potentially
requiring the use of superplasticizers to maintain
practical consistency for real-world applications,
as hinted by lkumapayi et al. [19] who used a
superplasticizer to enhance properties of
sawdust ash concrete. This emphasizes that while
sawdust offers sustainability benefits, its
application requires careful mix design
adjustments to ensure adequate workability for
placement and compaction. Fig. 4 shows the
slump being measured with a meter rule.

Fig. 4. Measuring the slump with meter rule.

3.3 Setting Time of Geopolymer Concrete

The setting time results, as presented in Table 4,
clearly indicate that the inclusion of sawdust
significantly prolonged both the initial and final
setting times of the metakaolin-sawdust
geopolymer concrete. The control mix (0%
sawdust) exhibited an initial setting time of 53
minutes and a final setting time of 143 minutes.
As the sawdust content increased, these times
consistently extended. For example, the mix with
10% sawdust had an initial setting time of 82
minutes and a final setting time of 193 minutes,
while the 40% sawdust mix showed substantially
longer setting times of 242 minutes and 425
minutes, respectively.
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Table 4. Initial and Final Setting Times of
Geopolymer Concrete Mixes.

Initial Final

Mix 1D Metakaolin | Sawdust | Setting | Setting
(%) (%) Time Time

(min.) | (min.)
(C(J?,Ztggl) 100 0 53 143
GPC-SD4 96 4 58 147
GPC-SD7 93 7 63 174
GPC-SD10 90 10 82 193
GPC-SD13 87 13 96 221
GPC-SD15 85 15 114 247
GPC-SD20 80 20 140 286
GPC-SD22 78 22 153 298
GPC-SD25 75 25 171 330
GPC-SD30 70 30 213 373
GPC-SD40 60 40 242 425

This observed retardation in setting is primarily
attributed to the chemical composition and
physical properties of sawdust. Sawdust, being a

lignocellulosic material, contains organic
compounds such as sugars, cellulose,
hemicellulose, and lignin. These organic

constituents can interfere = with  the
geopolymerization process by retarding the
dissolution of aluminosilicate precursors from
metakaolin or by adsorbing the alkaline
activators (sodium hydroxide and sodium
silicate), thereby reducing their effective
concentration in the mix. Additionally, the high
water absorption capacity of sawdust (as detailed
in Table 1) means it competes for the available
water in the alkaline solution, which can further
slowdown the chemical reactions critical for
geopolymer formation and hardening.

While Duan et al. [4] also investigated the fresh
properties of sawdust-reinforced geopolymer,
their summary states that 'The sawdust content
is inversely proportional to the setting time." This
specific observation from Duan et al. [4] does not
align with the current study's findings, which
consistently demonstrate a direct relationship
between increasing sawdust content and a
prolongation of both initial and final setting times
(i.e., higher sawdust percentages lead to longer
setting times). Fig. 5 captures the geopolymer
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concrete in its unhardened, malleable phase,
ready for or just subjected to molding into
specimens.

S “ .“‘ .
el %4
Fig. 5. Geopolymer Concrete during Mixing and
Molding.

3.4 Bulk Density and Water Absorption
Capacity

In the current study (Table 5), the bulk density of
geopolymer concrete progressively declined
from 2350 kg/m?> (0% SD) to 1400 kg/m? (40%
SD) with increasing sawdust content. Conversely,
water absorption rose from 3.5% to 25%,
indicating increasing porosity and reduced
compactness at higher sawdust proportions.
These findings align with Mehdi et al. [3], who
observed that complete replacement of natural
aggregate with sawdust in FA-GBFS-based
geopolymer led to a significant reduction in
weight and improved thermal and acoustic
properties. Though strength reduced, the
concrete became more porous and lighter
supporting the trends in density and water
absorption observed in this study.

Similarly, Duan et al. [4] reported a linear inverse
relationship between sawdust content and
density, confirming that sawdust addition
increases porosity and reduces compactness.
They also noted improved shrinkage resistance
and microstructure refinement at moderate
additions. Oyedepo et al. [20] and Osei and
Jackson [21] also documented a steady reduction
in density with rising sawdust content in OPC-
based mixes. Osei and Jackson [21] quantified
this with a 17.93% drop in density at 100%
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replacement, mirroring the lighter concrete (41 Bump o0 Sttt Reptassmsers i By i S S
observed in this study. NG ] =
Table 5. Bulk Density and Water Absorption of — R
Hardened Geopolymer Concrete at 28 Days. i i e e o 4 AR <y, e v il SR
. Bulk Water : w0 o (M o s
Mix ID Met;)l/(a;olm Sa\(/\;/d)ust Density | Absorption _ ok : ? o O ¢ l
’ ’ (kg/m?) (%) I s
Control - e
(0% SD) 100 0 2350.0 35 P e ety
GPC-SD4 96 4 2280.0 4.2 i o
GPC-SD7 93 7 2210.0 5.1 L
GPC-SD10 90 10 2130.0 6.5
GPC-SD13 87 13 2050.0 80 Fig. 6. Influence of Sawdust Replacement Percentage
GPC-SD15 85 15 1970.0 9.5 on the Properties of Geopolymer.
GPC-SD20 80 20 1800.0 125
GPC-SD22 78 22 1720.0 14.0 3.5 Compressive Strength Results of
GPC-SD25 75 25 1650.0 16.0 Geopolymer Concrete
GPC-SD30 70 30 1550.0 19.5
GPC-SD40 60 40 1400.0 25.0 The current study (Table 6) and Fig. 7 recorded a
gradual reduction in compressive strength with
Overall, the current results corroborate existing increasing sawdust content. OAt 28 days, strength
literature that sawdust inclusion reduces bulk dropped from 36.1 MPa (0% SD) to 21.9 MPa
density and increases water absorption, (15% SD) and further to 3.8 MPa at 40% sawdust
especially beyond 15-20% replacement, making replacement. In comparison, Mehdi et al. [3]
it suitable primarily for non-structural or found that subs'Fltutmg natural aggregate with
lightweight applications where thermal and 100% sawdust in FA-GBFS-based geopolymer
acoustic insulation may be desirable. Fig. 6 concrete led to an approximate 35% reduction in
depicts the influence of Sawdust Replacement compressive strength, but improved sound
Percentage on the Properties of Geopolymer absorption  and , thermal  performance,
Concrete: (a) Slump, (b) Initial Setting Time, (c) emphasizing sawdust’s multifunctional impact.
Final Setting Time, (d) Bulk Density, and (e)
Water Absorption.

Table 6. Compressive Strength of Metakaolin-Sawdust Geopolymer Concrete.

Mix ID Metakaolin (%) Sawdust (%) 7 Days 14 Days 21 Days 28 Days

Control (0% SD) 100 0 25.2 31.5 34.8 36.1
GPC-SD4 96 4 23.8 29.7 325 339
GPC-SD7 93 7 215 27.0 29.8 31.2
GPC-SD10 90 10 19.3 24.5 27.1 28.5
GPC-SD13 87 13 17.0 21.8 24.2 25.5
GPC-SD15 85 15 14.5 18.5 20.8 219
GPC-SD20 80 20 11.2 14.0 16.0 17.2
GPC-SD22 78 22 9.5 11.8 13.5 14.5
GPC-SD25 75 25 7.8 9.5 10.8 11.5
GPC-SD30 70 30 5.0 6.2 7.1 7.5
GPC-SD40 60 40 25 31 3.5 3.8
OPC (for comparison) N/A N/A 20.0 26.0 28.0 30.0

Oyedepo et al. [20] reported compressive 1193 MPa at 25%, 75%, and 100% sawdust
strengths of 14.15MPa, 12.96 MPa, and replacement of sand in OPC concrete, all below
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the 17 MPa minimum for lightweight structural
concrete highlighting strength limitations at
higher replacements. Duan et al. [4] showed that
sawdust had little effect on compressive strength
before 14 days, but improved later-age strength
and microstructure, especially at <20% addition,
which is consistent with the strength gain pattern
observed in this study after 14 and 28 days.
Meanwhile, Ezeagu & Agbo-Anike [22] and Osei &
Jackson [21] reported that increasing sawdust
content generally reduced workability, density,
and strength, but recognized its economic and
environmental potential as a lightweight
material. Overall, the findings of the current
study confirm that while sawdust reduces
strength beyond 15%, moderate inclusion (<10-
15%) remains viable for lightweight or non-
structural geopolymer applications.

-
-

3 P Al

Fig. 7. Compressive Strength Results of the Concrete
Mixes.

3.6 Experimental Data

Table 7 presents the experimental data used for
training, validating and testing the Artificial

S5=

Mg Stac o =2 [

I |

Courrag Deys

Fig. 8. Histogram Distribution of the Experimental Data.
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Intelligence (AI) models used in this study. Fig. 8
shows the spread of metakaolin content and
sawdust content in kg/m? the specific
percentages used for sawdust replacement, the
distribution of slump values in mm, the fixed
curing periods in curing days, and the range of
measured compressive strength in MPa. The two
surface plots shown in Fig. 9 are valuable for
understanding the multivariate relationships
between key input parameters (Curing Days and
Sawdust Replacement) and important material
properties (Slump and Compressive Strength).

Surface Plot of Slamp Rexponse

Sewthal Regtucament (%)

snng Days

Surtsce Mot of Compesasive Sarungth Rmsponss

I;
; .

Cunng Days

Fig. 9. Surface plots Compressive strength and Slump
Response.
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Table 7. Experimental Data (where S.R = Sawdust Replacement and C.S = Compressive Strength).

Alkaline

Mix ID W/B Water Metakaolin Sawdust Sand Granite Activators S.R | Slump | Curing C.S
(kg/m*) (kg/m?) (kg/m®) | (kg/m*) | (kg/m?) (kg/m®) (%) | (mm) | Days | (MPa)
Control 0.4 92.5 231.25 0 619.65 832.8 416.4 0 172 7 25.2
Control 0.4 92.5 231.25 0 619.65 832.8 416.4 0 172 14 31.5
Control 0.4 92.5 231.25 0 619.65 832.8 416.4 0 172 21 34.8
Control 0.4 92.5 231.25 0 619.65 832.8 416.4 0 172 28 36.1
GPC-SD4 0.4 92.5 222 9.25 619.65 832.8 416.4 4 164 7 23.8
GPC-SD4 0.4 92.5 222 9.25 619.65 832.8 416.4 4 164 14 29.7
GPC-SD4 0.4 92.5 222 9.25 619.65 832.8 416.4 4 164 21 325
GPC-SD4 0.4 92.5 222 9.25 619.65 832.8 416.4 4 164 28 33.9
GPC-SD7 0.4 92.5 215.06 16.19 619.65 832.8 416.4 7 155 7 21.5
GPC-SD7 0.4 92.5 215.06 16.19 619.65 832.8 416.4 7 155 14 27
GPC-SD7 0.4 92.5 215.06 16.19 619.65 832.8 416.4 7 155 21 29.8
GPC-SD7 0.4 92.5 215.06 16.19 619.65 832.8 416.4 7 155 28 31.2
GPC-SD10 0.4 92.5 208.12 23.12 619.65 832.8 416.4 10 137 7 19.3
GPC-SD10 0.4 92.5 208.12 23.12 619.65 832.8 416.4 10 137 14 24.5
GPC-SD10 0.4 92.5 208.12 23.12 619.65 832.8 416.4 10 137 21 27.1
GPC-SD10 0.4 92.5 208.12 23.12 619.65 832.8 416.4 10 137 28 28.5
GPC-SD13 0.4 92.5 201.19 30.06 619.65 832.8 416.4 13 105 7 17
GPC-SD13 0.4 92.5 201.19 30.06 619.65 832.8 416.4 13 105 14 21.8
GPC-SD13 0.4 92.5 201.19 30.06 619.65 832.8 416.4 13 105 21 24.2
GPC-SD13 0.4 92.5 201.19 30.06 619.65 832.8 416.4 13 105 28 25.5
GPC-SD15 0.4 92.5 196.56 34.69 619.65 832.8 416.4 15 78 7 14.5
GPC-SD15 0.4 92.5 196.56 34.69 619.65 832.8 416.4 15 78 14 18.5
GPC-SD15 0.4 92.5 196.56 34.69 619.65 832.8 416.4 15 78 21 20.8
GPC-SD15 0.4 92.5 196.56 34.69 619.65 832.8 416.4 15 78 28 21.9
GPC-SD20 0.4 92.5 185 46.25 619.65 832.8 416.4 20 56 7 11.2
GPC-SD20 0.4 92.5 185 46.25 619.65 832.8 416.4 20 56 14 14
GPC-SD20 0.4 92.5 185 46.25 619.65 832.8 416.4 20 56 21 16
GPC-SD20 0.4 92.5 185 46.25 619.65 832.8 416.4 20 56 28 17.2
GPC-SD22 0.4 92.5 180.38 50.88 619.65 832.8 416.4 22 33 7 9.5
GPC-SD22 0.4 92.5 180.38 50.88 619.65 832.8 416.4 22 33 14 11.8
GPC-SD22 0.4 92.5 180.38 50.88 619.65 832.8 416.4 22 33 21 13.5
GPC-SD22 0.4 92.5 180.38 50.88 619.65 832.8 416.4 22 33 28 14.5
GPC-SD25 0.4 92.5 173.44 57.81 619.65 832.8 416.4 25 14 7 7.8
GPC-SD25 0.4 92.5 173.44 57.81 619.65 832.8 416.4 25 14 14 9.5
GPC-SD25 0.4 92.5 173.44 57.81 619.65 832.8 416.4 25 14 21 10.8
GPC-SD25 0.4 92.5 173.44 57.81 619.65 832.8 416.4 25 14 28 11.5
GPC-SD30 0.4 92.5 161.88 69.38 619.65 832.8 416.4 30 0 7 5
GPC-SD30 0.4 92.5 161.88 69.38 619.65 832.8 416.4 30 0 14 6.2
GPC-SD30 0.4 92.5 161.88 69.38 619.65 832.8 416.4 30 0 21 7.1
GPC-SD30 0.4 92.5 161.88 69.38 619.65 832.8 416.4 30 0 28 7.5
GPC-SD40 0.4 92.5 138.75 92.5 619.65 832.8 416.4 40 0 7 2.5
GPC-SD40 0.4 92.5 138.75 92.5 619.65 832.8 416.4 40 0 14 3.1
GPC-SD40 0.4 92.5 138.75 92.5 619.65 832.8 416.4 40 0 21 3.5
GPC-SD40 0.4 92.5 138.75 92.5 619.65 832.8 416.4 40 0 28 3.8
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3.7 MATLAB Neural Network Training
Summary

Fig. 10 shows a 3-layer neural network (4-10-1
architecture) trained with Bayesian
Regularization to minimize Mean Squared Error.
After 157 iterations, the model achieved a low
MSE of 2.37e-05 with no validation failures. A
gradient of 1.60 and Mu of 0.005 suggest stable
and effective learning. The setup reflects efficient
training and strong generalization.
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Fig. 10. Neural Network Training Progress and
Configuration in MATLAB.

ANN General Performance

The Artificial Neural Network (ANN) model
employed in this study exhibited excellent
predictive performance in estimating the
compressive strength of geopolymer concrete
incorporating sawdust and metakaolin. During
training, the model achieved a coefficient of
determination (R?*) of 0.9982, with a Mean
Squared Error (MSE) of 0.2632, Root Mean
Squared Error (RMSE) of 0.5130, and Mean
Absolute Error (MAE) of 0.3462. These values
indicate a highly accurate fit to the training data,
demonstrating the model’s ability to capture the
complex nonlinear relationships among the input
variables (metakaolin percentage, sawdust
percentage, and curing days). In the testing
phase, the ANN maintained strong generalization
capabilities, achieving an R? of 0.9423, MSE of
2.1898, RMSE of 1.4798, and MAE of 1.2297.
Although the error metrics were slightly higher
compared to the training phase, the model still
delivered reliable predictions on unseen data.
The relatively small difference between training
and testing R? values suggests that overfitting
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was effectively minimized. Furthermore, the
network architecture, consisting of three input
neurons, ten hidden neurons, and one output
neuron, proved to be suitably optimized for the
dataset. The use of the Levenberg-Marquardt
algorithm during training contributed to the
model’s rapid convergence and high accuracy.
Overall, the ANN model outperformed the ANFIS
and GEP model (presented in my colleagues
work) in terms of generalization and error
metrics, confirming its suitability as a robust and
reliable predictive tool for compressive strength
modeling in geopolymer concrete systems.

Model Prediction Accuracy across Data Sets

Fig. 11 presents four scatter plots illustrating the
performance of a predictive model across
different data sets: training, validation, test, and
all combined. Each plot shows predicted values
versus actual target values with a regression line
and accompanying equation. The high correlation
coefficients (close to 0.999) and slope values near
1 indicate strong linear alignment and minimal
prediction error, confirming that the model
performs consistently and accurately, not just on
the data it was trained on, but also on unseen
data. This reinforces its generalization capability
and reliability.

Training: R=0.99386

Validation: R=0.93838
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Fig. 11. Regression Analysis of Model Performance
across Data Sets.

Model Error Distribution across Datasets

Fig. 12 illustrates the distribution of prediction
errors and differences between targets and
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outputs, across training, validation, and test sets
using a 20-bin histogram. The dominant
clustering of errors near zero, indicated by the
height of bars around the center and the orange
marker at zero error, signals strong model
accuracy overall. The presence of slightly wider
error margins in the validation and test sets,
compared to training, hints at potential
generalization gaps that may warrant attention.
Color coding enhances interpretability: blue for
training, green for validation, and red for test
data. Overall, the error pattern supports the
model's predictive reliability, while also guiding
future improvements to minimize deviation and
reinforce robustness across datasets.
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Fig. 12. Error Distribution with 20 Bins.

ANN Training Dynamics and Convergence
Behavior

Fig. 13 shows the ANN training process over 157
epochs. The gradient reduced to 2.3584e-05,
indicating convergence. The mu value increased
only at the final epoch, showing stable learning.
The number of parameters stabilized at 15.937,
while the sum of squared weights (ssX) settled at
5.1855, confirming weight stability. No validation
checks occurred, indicating consistent
generalization and no overfitting.

ANN Model Error Performance Evaluation

Fig. 14 illustrates the Mean Squared Error (MSE)
during training, validation, and testing over 157
epochs. The best validation performance of
0.00016768 was achieved at epoch 156, showing
excellent model generalization. The validation
and test curves closely follow each other,

indicating minimal overfitting. The early and
sharp drop in MSE confirms fast learning, while
the final convergence near the minimum value
highlights training stability and good predictive
accuracy.

Gradient = 2.3584e-05, at epoch 157

Jrndient

Mu = 50000000000.0001, at epoch 157

Num Parameters = 15937, at epoch 157
| T Sum Squarsd Param= S18%5. W epoch 157
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Fig. 13. ANN Training Metrics over 157 Epochs.
Best Validation Performance is 0.00016768 at epoch 156
5 :
i
S
g
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=
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Fig. 14. ANN Training, Validation, and Test MSE
Performance Curve.
ANN-Based Prediction of Compressive

Strength Response to Material Variation

Fig. 15 presents a 3D surface plot showing the
ANN-predicted compressive  strength  of
geopolymer concrete at 28 days as a function of
sawdust replacement (%) and metakaolin
content (kg/m?3), with slump held constant at
83.1 mm. The compressive strength increases
with higher metakaolin content and decreases as
sawdust replacement rises. This trend reflects
the strengthening role of metakaolin and the
diluting effect of sawdust, aligning with the
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experimental observations. The smooth gradient
confirms the ANN model's strong predictive
capacity across the input variables.

ANN Predicted Compressive Strength (Curing Day = 28, Slump = 83.1 mm)

Compressive Strength (MPa)

Masaaoin (kgim”)

Sawdust Reglocement (%)

Fig. 15. ANN Surface Plot of Predicted Compressive
Strength at 28 Days (Slump = 83.1 mm).

3.8 Adaptive Neuro Fuzzy Inference System
(ANFIS)

Fig. 16 details the ANFIS Model architecture and
parameters, displaying a Sugeno-type system
with its three inputs, single output, and specific
fuzzy operators. Complementing this, the Figure
also shows the Fuzzy Inference System Rule
Viewer, which visually traces the ANFIS's
inference for given inputs (all 0.5), showing rule
activation and the derivation of the crisp output
(0.506). Together, these figures comprehensively
illustrate both the design and the detailed
operational mechanics of the ANFIS model.

-ty

Z s
NP -
e
o memat = Carreet Varwise
O memed s yaenn rout!
oame s o
<arge ny
Agezenm
Defuzztezmes e o s | o | I
|2 |
input! =0.5 input2 =0.5 input3 =0.5 inputd =0.5 output = 0.506
TS o § Sm—
2 e C )
3 - L
4 o
g - b
7 — Ca
: -
10 o
i ' c—
13 v
s 5
 —
16 (=
17 '
18 (=
1 —
20 ”
2H1 -
%2 S
25 F-—
i v
= ’.‘
2 ; p—
30 1 ~
Wput 05050505 “""M (101 "m en | rgnt | cown | w |

Fig. 16. ANFIS Model Architecture and Inference Process.

ANFIS General Performance

The Adaptive Neuro Fuzzy Inference System
(ANFIS) was implemented using 30 training data
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pairs and 7 checking (testing) data pairs to model
the relationship between the selected input
variables and the output. The model architecture
consisted of 193 nodes, 405 linear parameters, 36
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nonlinear parameters, totaling 441 modifiable
parameters, and a complex rule base made up of
81 fuzzy rules. A warning was issued indicating
that the number of training data points was lower
than the number of parameters, suggesting a
potential risk of overfitting. This concern was
reflected in the training performance expressed
in Fig., where the model achieved a perfect
goodness of fit with an R? value of 1.0000 and
zero errors across the MSE, RMSE, and MAE
metrics. This result indicates that the model fit
the training data exceptionally well, possibly
memorizing it rather than learning generalized
patterns.

However, the performance on the checking (test)
set provided a more realistic measure of
generalization capability. The testing results
showed an R? of 0.7584, MSE of 12.1267, RMSE of
3.4823,and MAE of 2.0608 (Fig. 17). These values
suggest that although the model still performs
fairly well on unseen data, the accuracy drops
noticeably compared to the training set,
confirming the initial concern about overfitting
due to the high number of parameters relative to
available data. Additionally, the training process
displayed progressive learning, with the step size
increasing steadily over epochs from 0.0110 after
epoch 5 to 0.0214 after epoch 36, indicating
stable convergence behavior.

ANFIS Parity Plot - Testing Data

Birengts (M9's

ANFS Parity Plot - Training Data

Fig. 17. ANFIS Parity Plots.

Nevertheless, the generated 3D surface plots
represented by Fig. 20 provide meaningful
visualization of the interactions between input
variables and their influence on the predicted
output. In overall, the ANFIS model demonstrated
excellent performance on training data and
acceptable generalization on the testing set, but
improvements could be made by simplifying the
model structure or increasing the dataset size to
enhance robustness and reduce overfitting.

ANFIS Model Error Analysis and Membership
Functions

Fig. 18 displays histograms of ANFIS prediction
errors (Actual - Predicted) for both training (left)
and testing (right) datasets, with a superimposed
normal distribution curve. Both plots show
errors largely centered around zero, indicating
accurate model predictions for both seen and
unseen data. The distributions highlight the
model's performance and generalization ability.
Fig. 19 shows provides the input membership
functions, each variable is characterized by three
fuzzy sets (e.g, low, medium, high), and
indicating the degree of belongingness for values
within a 0-1 normalized range.

ANFIS Error Destribution - Training Data
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Fig. 18. ANFIS Prediction Error Distribution.
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Fig. 20. ANFIS 3D Surface Plots.

3.9 Performance Evaluation of GEP Model
Training

The Gene Expression Programming (GEP) model
was trained over 20 generations, showing rapid

convergence to an optimal solution. Initially, both
the population average fitness and the best
individual fitness improved significantly from
generation 0 to 1, with best fitness reducing from
0.00449 to 0.00397. By generation 6, a consistent
minimum fitness value of 0.0136981 was
achieved and maintained across subsequent
generations, indicating convergence and model
stability. The chromosome length of the best
individual also stabilized at 1, showing that the
model had minimized redundancy and
complexity while preserving predictive accuracy.
Table 8 shows the evolution of fitness and
chromosome length during GEP training.

GEP Model Performance Discussion

The Gene Expression Programming (GEP) model
exhibited moderate-to-good predictive
performance across the training and testing
phases. On the training set, the model achieved an
R? of 0.8354, indicating that approximately
83.5% of the variance in compressive strength is
captured by the evolved expression.
Correspondingly, the Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) values
were 3.93 MPa and 3.20 MPa, respectively,
suggesting reasonably low deviation between
predicted and actual values.

Table 8. Evolution of Fitness and Chromosome Length during GEP Training.

. Avg. Chromosome . Best . 00B Time
Generation Avg. Fitness Best Fitness )
Length Chromosome Length Fitness Left

0 11.88 164249 9 0.00449082 N/A 1.72m
1 4.53 240773 10 0.00396707 N/A 1.23m
2 1.73 0.0574911 5 0.00823218 N/A 1.45m
3 1.04 0.0828585 6 0.013697 N/A 1.02m
4 1.03 0.234424 7 0.008207 N/A 1.00m
5 1.03 0.232288 1 0.0136981 N/A 1.22m
6 1.05 0.0310682 1 0.0136981 N/A 50.40s
7 1.04 0.0272813 1 0.0136981 N/A 1.13m
8 1.04 0.211432 1 0.0136981 N/A 45.94s
9 1.03 0.0303183 1 0.0136981 N/A 37.32s
10 1.04 0.0261529 1 0.0136981 N/A 37.33s
11 1.03 0.0251979 1 0.0136981 N/A 37.47s
12 1.03 0.0329538 1 0.0136981 N/A 28.43s
13 1.04 2.99697 1 0.0136981 N/A 22.87s
14 1.03 0.0277006 1 0.0136981 N/A 25.06s
15 1.05 0.576413 1 0.0136981 N/A 15.30s
16 1.04 0.122667 1 0.0136981 N/A 12.23s
17 1.04 0.0306872 1 0.0136981 N/A 10.40s
18 1.03 0.0288972 1 0.0136981 N/A 3.81s
19 1.04 0.108793 1 0.0136981 N/A 0.00s
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However, on the testing set, the performance
slightly declined with an R? of 0.6532, showing
that the model explains around 65.3% of the
variation in unseen data. The RMSE and MAE
increased to 5.69 MPa and 4.31 MPa, respectively,
which indicates a drop in generalization
accuracy. This reduction in predictive accuracy
on the test set is common in symbolic regression
models and may be attributed to overfitting or
the structural simplicity of the evolved
expression (X3, in this case), which might not fully
capture the nonlinear interactions among all
variables. The parity plots shown in Fig. 21
support these findings: training predictions align
well with actual values, while testing predictions
show greater scatter. Overall, the model performs
acceptably but may benefit from further tuning or
feature expansion.

GEP Parity Plot - Training Data
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Fig. 21. GEP Parity Plots.
GEP Model Error Analysis
Fig. 22 displays histograms of the GEP model's

prediction errors (Actual - Predicted) for both
training (left) and testing (right) datasets. The

errors are broadly distributed, spanning a
significant range for both sets. The training
errors show peaks, and the testing errors exhibit
noticeable peaks away from zero (e.g.,around -10
MPa and between 2.5-5 MPa). This indicates that
the GEP model's predictions are not consistently
centered around zero and show a wider, more
scattered error distribution, particularly for
unseen data.

GEF Error Distribution - Training Data
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Fig. 22. GEP Prediction Error Distribution.
GEP Model Response Surface Analysis

Fig. 23 (GEP Predicted Compressive Strength,
Curing Day = 28, Slump = 17.5 mm) visualizes the
GEP model's predicted compressive strength. It
shows how strength subtly varies with
Metakaolin content and Sawdust Replacement
percentage, holding Curing Day and Slump
constant. The largely flat surface indicates a
consistent, albeit low-ranging (5.4-6.4 MPa),
predicted strength within the shown input ranges
under these fixed conditions.
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Fig. 23. GEP 3D Surface plots (GEP Predicted
Compressive Strength, Curing Day = 28, Slump = 17.5
mm).

3.10 Model Performance Comparison

This study generally compared Artificial Neural
Networks (ANN), Adaptive Neuro-Fuzzy
Inference Systems (ANFIS), and Gene Expression
Programming (GEP) for predicting geopolymer
concrete compressive strength, revealing distinct
characteristics and performance trade-offs. The
ANN, a robust "black-box" model, demonstrated
exceptional predictive capability, achieving an R?
of 0.9982 on the training data and maintaining
strong generalization with an R? of 0.9423 and an
RMSE of 1.48 MPa on the unseen testing data,
effectively minimizing overfitting. In contrast, the
ANFIS, a complex hybrid system, perfectly fit the
training data with an R? of 1.0000 (RMSE 0.00
MPa), but this indicated significant overfitting, as
its performance notably declined to an R? of
0.7584 and an RMSE of 3.48 MPa on the testing
set. Finally, the GEP model provided highly
interpretable explicit mathematical expressions,
yielding an R? of 0.8354 on training. However, it
exhibited the lowest generalization capability
among the three, with an R? of 0.6532 and an
RMSE of 5.69 MPa on the testing data, a likely
consequence of its evolved simplicity trading off
some predictive accuracy (see Table 9). Overall,
while ANFIS and GEP offered varying degrees of
interpretability, the ANN model proved to be the
most accurate and reliable predictive tool for this
specific application due to its superior
generalization performance. The results of all the
models are provided in Table 9.

202

Table 9. Model metrics comparison.

Metric | Dataset ANN ANFIS GEP
) Training | 0.9982 | 1.0000 0.8354
R
Testing | 0.9423 | 0.7584 0.6532
. 15.4449
Training | 0.2632 0.0000
(from RMSE)
MSE
32.3761
Testing | 2.1898 | 12.1267
(from RMSE)
Training | 0.5130 | 0.0000 3.93
RMSE
Testing | 1.4798 | 3.4823 5.69
Training | 0.3462 | 0.0000 3.20
MAE
Testing | 1.2297 | 2.0608 431

3.11 Practical Application of the study

The metakaolin-sawdust geopolymer concrete
(MSGC) developed in this study presents diverse
and valuable applications in real-life engineering
practices, contingent upon the sawdust content
and specific project requirements. While higher
sawdust percentages yield genuinely lightweight
concrete suitable for non-structural uses, lower
sawdust inclusions result in materials capable of
fulfilling structural demands. Specifically, MSGC
mixes with up to approximately 20% sawdust can
achieve or exceed the minimum 17 N/mm?
compressive strength requirement for
lightweight concrete, with the control mix (0%
sawdust) notably reaching 36.1 MPa at 28 days,
surpassing conventional Ordinary Portland
Cement (OPC) concrete. This makes these mixes
suitable for structural elements such as beams,
columns, and slabs, offering a sustainable
alternative that leverages waste materials.
Conversely, MSGC with higher sawdust content
(e.g, 22% to 40%) provides ultra-lightweight
concrete (densities as low as 1400 kg/m?), which,
despite lower compressive strengths (falling
below 17 N/mm?), excels in non-load-bearing
applications. These include insulating blocks and
panels, partition walls, and void-filling materials,
where reduced weight, enhanced thermal
insulation, and improved acoustic properties are
highly desirable. It is important to acknowledge
that the study identified challenges such as
significant reductions in workability (slump
decreasing from 172 mm to zero at higher
sawdust contents) and prolonged setting times,
which would necessitate careful mix design
adjustments, potentially including the use of
superplasticizers, to ensure practical placement
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and compaction in construction. Fundamentally,
this research contributes to sustainable
construction by demonstrating the viability of
utilizing metakaolin and sawdust as eco-friendly
alternatives, thereby reducing reliance on virgin
resources and lowering the industry's carbon
footprint. Furthermore, the development of a
highly accurate Artificial Neural Network (ANN)
model (R?=0.9423) provides engineers with a
robust tool to predict compressive strength,
enabling optimized mix designs and more
efficient resource allocation in practical
applications.

4. CONCLUSION

This study comprehensively investigated the
influence of metakaolin and sawdust on the fresh
and hardened properties of geopolymer concrete,
alongside developing predictive models for its
compressive strength. The inclusion of sawdust
profoundly impacted fresh concrete
characteristics, with  workability (slump)
consistently decreasing from a high of 172 mm
for the control mix (0% sawdust) to zero slump
at 30% and 40% sawdust replacement, primarily
due to sawdust's high water absorption capacity
(31.2%). Setting times were significantly
prolonged by sawdust; initial setting time
increased from 53 minutes (0% sawdust) to 242
minutes (40% sawdust), and final setting time
from 143 minutes to 425 minutes, attributed to
organic compounds interfering with
geopolymerization. In the hardened state, an
inverse relationship was observed between
sawdust content and bulk density, which
declined from 2350 kg/m? (0% sawdust) to 1400
kg/m3 (40% sawdust), while water absorption
progressively rose from 3.5% to 25%, indicating
increased porosity and reduced compactness.
Regarding compressive strength, a general
reduction was noted with higher sawdust
content, decreasing from 36.1 MPa (0% sawdust)
to 3.8 MPa (40% sawdust) at 28 days. Notably,
the control mix (0% sawdust) achieved a
superior 28-day strength (36.1 MPa) compared
to traditional Ordinary Portland Cement (OPC)
concrete (30.0 MPa), and mixes with up to 10%
sawdust (28.5 MPa) remained competitive.

Regarding predictive modeling, Artificial Neural
Networks (ANN) demonstrated superior
performance in forecasting compressive
strength, achieving a coefficient of determination

(R?) 0f 0.9423 on the testing dataset, with a Mean
Squared Error (MSE) of 2.1898 and a Root Mean
Squared Error (RMSE) of 1.4798. While Adaptive
Neuro-Fuzzy Inference Systems (ANFIS) showed
perfect fit on the training data (R* = 1.0000), its
testing performance (R® = 0.7584) was less
robust than ANN. Gene Expression Programming
(GEP) performed the least effectively with a
testing R? of 0.6532. These quantitative results
confirm that metakaolin-sawdust geopolymer
concrete, particularly at lower sawdust inclusion
rates, offers a viable and high-strength
sustainable construction material, and ANN
models are highly effective for its strength
prediction.
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