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A B S T R A C T 

This study examines the fresh and hardened characteristics of metakaolin-
sawdust geopolymer concrete (MSGC) and develops models to predict its 
compressive strength. MSGC mixes were prepared with sawdust replacing 
fine aggregates at levels from 0% to 40%. Evaluations covered 
workability, setting time, bulk density, water absorption, and compressive 
strength, alongside artificial intelligence-based prediction. Increasing 
sawdust levels led to marked reductions in slump (172 mm at 0% to 0 mm 
at 30–40%) and substantial delays in initial setting time (53 minutes at 
0% to 242 minutes at 40%). Bulk density fell from 2350 kg/m³ to 1400 
kg/m³, while water absorption rose sharply from 3.5% to 25% as sawdust 
content increased. MSGC compressive strength decreased from 36.1 MPa 
(0%) to 3.8 MPa (40%) at 28 days. The control mix outperformed ordinary 
Portland cement concrete (OPC), and MSGC with up to 10% sawdust 
remained competitive (28.5 MPa). Predictive models developed using 
Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference 
Systems (ANFIS), and Gene Expression Programming (GEP) showed the 
ANN model provided best accuracy, with R² = 0.9423. Overall, findings 
confirm MSGC’s potential as a sustainable alternative for construction. 
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1. INTRODUCTION 
 
Geopolymer concrete (GPC) has gained 
prominence as an environmentally friendly and 
sustainable alternative to conventional cement-
based concrete due to its reduced carbon 
footprint. Instead of using ordinary Portland 

cement, GPC utilizes industrial by-products such 
as fly ash, ground granulated blast furnace slag 
(GGBFS), rice husk ash, and metakaolin as 
binders, significantly lowering the environmental 
impact of concrete production [1,2]. The 
compressive strength of geopolymer concrete is 
a crucial parameter for its use in structural 
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applications, and its prediction is essential for 
optimizing mix designs and improving the 
sustainability of construction materials. 
 
Among various alternative materials for 
geopolymer concrete, metakaolin and sawdust 
are gaining attention. Metakaolin, a kaolin-based 
material, is known for its high reactivity, which 
enhances the mechanical properties of 
geopolymer concrete [1]. Sawdust, a widely 
available waste material, has also been used in 
geopolymer concrete, often as a replacement for 
natural aggregates. Sawdust-based geopolymer 
concrete exhibits improved thermal insulation 
and sound absorption properties, making it 
suitable for lightweight construction applications 
[3]. However, the inclusion of sawdust can reduce 
the compressive strength of the concrete, 
especially at higher replacement levels [4]. 
 
The combination of metakaolin and sawdust in 
geopolymer concrete can offer a dual benefit of 
improved strength and sustainability. Metakaolin 
acts as a strong binder, while sawdust 
contributes to the reduction of environmental 
impact by replacing natural aggregates and 
enhancing the material's insulation properties 
[3]. Therefore, the prediction of compressive 
strength in such geopolymer mixes is vital to 
ensure optimal performance and structural 
reliability. 
 
Recent studies have employed machine learning 
models to predict the compressive strength of 
geopolymer concrete. For instance, Support 
Vector Regression (SVR) and Grey Wolf 
Optimization (GWO) models have been used to 
predict the strength of GGBFS-based geopolymer 
concrete [5]. Additionally, Artificial Neural 
Networks (ANNs) have shown potential in 
predicting the compressive strength of fly ash-
based geopolymer concrete [6]. These predictive 
models can incorporate various factors, such as 
the ratio of alkaline liquids, curing conditions, 
and binder contents, to forecast the concrete's 
strength with high accuracy. 
 
The present study aims to develop predictive 
models for the compressive strength of 
metakaolin-saw dust geopolymer concrete by 
leveraging machine learning techniques. By 
analyzing the impact of various mix design 
parameters, including the content of metakaolin 
and sawdust, and curing conditions, the study 

seeks to establish a reliable model for predicting 
the compressive strength of these eco-efficient 
concretes, thereby contributing to sustainable 
construction practices [7]. 
 
This work aligns with the growing need to 
optimize the use of industrial by-products in 
construction materials while ensuring that the 
mechanical properties of the resulting concrete 
meet the required standards for structural 
integrity [1,2]. Through predictive analysis, this 
study aims to improve the formulation of 
geopolymer concrete mixes, thus advancing the 
goal of sustainable construction with reduced 
environmental impact. 
 
2. MATERIALS AND METHOD 
 
Fig. 1presents the study’s methodology, from 
material preparation and experimental testing to 
machine learning model development and 
evaluation using R², RMSE, MSE, and MAE. 
 

 
Fig. 1. Methodology Flow Chart. 

 
2.1 Metakaolin and Sawdust Preparation 
 
Metakaolin was procured from trusted suppliers 
in Ahiaeke Market, Abia State, ensuring it was 
free from impurities such as quartz, mica, and 
other minerals that could compromise its 
pozzolanic reactivity. To enhance surface area 
and improve reactivity during 
geopolymerization, the metakaolin was ground 
into a fine powder, targeting a fineness of 325 
mesh (45 microns) in line with ASTM C618 
requirements for pozzolanic materials. Sawdust, 
on the other hand, was collected from Ahiaeke 
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Building Material Market, carefully selected to be 
free of oils, resins, and paints that could interfere 
with the mix. To ensure consistency, the sawdust 
was oven-dried at 100–110°C for 24 hours until a 
constant weight was reached, thereby 
eliminating excess moisture that could affect the 
water-to-solid ratio. The dried sawdust was 
sieved through a 1.18 mm standard sieve to 
achieve uniform particle size distribution, 
conforming to ASTM D3164-09, and prepared for 
blending with the binder. 
 
2.2 Alkaline Activators: Sodium Hydroxide 

and Sodium Silicate Solutions 
 
The alkaline activators, sodium hydroxide 
(NaOH) and sodium silicate (Na₂SiO₃), were 
prepared at the Chemistry Laboratory of Michael 
Okpara University of Agriculture, Umudike, to 
serve as the primary agents for initiating 
geopolymerization. Sodium hydroxide flakes 
were dissolved in distilled water to obtain a 
concentrated solution of 8–16 M, prepared 
cautiously due to its caustic nature and in 
compliance with [8]. Sodium silicate, also known 
as water glass, was prepared with an SiO₂/Na₂O 
ratio between 1.5 and 3.0 to enhance bond 
formation within the polymeric matrix. The 
standard mixing ratio of sodium silicate to 
sodium hydroxide was maintained at 
approximately 2.5:1, ensuring optimum balance 
between strength and workability. The prepared 
solutions were combined immediately before 
mixing with the dry ingredients to maximize 
reactivity. All preparation procedures conformed 
to [9] to guarantee uniformity, safety, and 
consistency in the geopolymerization process. 
 
2.3 Aggregates and Mixing Water 
 
Both fine and coarse aggregates were selected to 
meet the necessary standards for strength, 
durability, and grading. Fine aggregates were 
sourced from Imo River and confirmed to be well-
graded, free from clay, silt, and organic matter, in 
accordance with [10]. Coarse aggregates, 
consisting of crushed granite obtained from 
Ishiagu Quarry in Ebonyi State, were graded 
within 5–20 mm and tested for hardness, texture, 
and moisture content in line with [11]. These 
aggregates provided the essential bulk and 
stability needed for the geopolymer concrete. 
Additionally, clean borehole water was obtained 
from the College of Engineering and Engineering 

Technology, MOUAU. The water was clear, 
odorless, and colorless, meeting the quality 
requirements for mixing concrete. Together, the 
fine aggregates, coarse aggregates, and water 
formed the structural backbone of the mix, 
complementing the binder and activators to 
produce durable and workable geopolymer 
concrete. 
 
2.4 Tests on Metakaolin–Sawdust 

Geopolymer Concrete 
 
A series of tests were carried out to evaluate the 
fresh and hardened properties of the 
metakaolin–sawdust geopolymer concrete in 
accordance with relevant standards. The 
compressive strength test, conducted using 
standard cube specimens in line with [12], 
assessed the concrete’s ability to withstand axial 
loads after curing for 7, 14, and 28 days. This test 
provided crucial data on the strength 
development and structural reliability of the mix. 
To complement this, the workability of fresh 
concrete was examined using the slump test as 
prescribed by [13]. The slump values offered 
insight into the ease of placement, compaction, 
and handling of the fresh geopolymer concrete. 
 
Durability and quality indicators were further 
investigated through density and void content 
tests in accordance with [14]. These tests 
determined the bulk density, water absorption, 
and volume of voids, which are essential 
parameters for predicting long-term 
performance and resistance to environmental 
attack. Additionally, the setting time of the 
concrete was measured using a Vicat apparatus 
following [15]. This provided information on 
both initial and final setting times, which are 
critical for understanding the hardening behavior 
and workability duration of the mix. Collectively, 
the tests offered a comprehensive evaluation of 
the mechanical, fresh state, and durability 
properties of the metakaolin–sawdust 
geopolymer concrete, ensuring that the material 
meets performance expectations for structural 
and sustainable construction applications. 
 
2.5 Methodology for Predicting Compressive 

Strength of Geopolymer Concrete using 
AI Models 

 
This study employs advanced Artificial 
Intelligence (AI) techniques, specifically Artificial 
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Neural Networks (ANN), Adaptive Neuro-Fuzzy 
Inference Systems (ANFIS), and Gene Expression 
Programming (GEP), to predict the compressive 
strength of geopolymer concrete. The 
methodology encompasses data collection and 
preprocessing, model construction and training, 
performance assessment, and visualization of 
results. The dataset used in this study consists of 
44 experimental observations that were 
manually compiled. This compilation focused on 
identifying key parameters that influence the 
compressive strength of geopolymer concrete. 
The selected input parameters (X) include 
Metakaolin content (MK, kg/m³), Sawdust 
Replacement (SD, %), Slump (S, mm), and Curing 
Days (CD, days). The output parameter (Y), which 
is the primary focus of the study, is Compressive 
Strength (CS, MPa).  
 
Data Cleaning 
 
Prior to analysis, the dataset was inspected for 
missing values or outliers. For this specific 
dataset, all values were assumed to be complete 
and accurate, thus no explicit cleaning operations 
such as imputation or outlier removal were 
performed. 
 
Data Normalization 
 
To ensure that all input and output parameters 
contribute equally to the model training and to 
improve the convergence and performance of the 
AI algorithms, the data were normalized to a 
range of [0, 1]. The Min-Max scaling method was 
applied using Eq. 1. 
 
For an individual data point xᵢ in a feature column 
X: 

 𝑥𝑛𝑜𝑟𝑚,𝑖  =  
𝑥𝑖  − 𝑥𝑚𝑖𝑛   

𝑥𝑚𝑎𝑥  − 𝑥𝑚𝑖𝑛   

 (1) 

Where 𝑥𝑚𝑖𝑛   and 𝑥𝑚𝑎𝑥    are the minimum and 
maximum values of the respective feature in the 
entire dataset. This transformation was applied 
to both the input features (X) and the output 
target (Y). The normalized input and output 
matrices are denoted as 𝑥𝑛𝑜𝑟𝑚 and 𝑦𝑛𝑜𝑟𝑚 
respectively. 
 
Data Splitting 
 
The normalized dataset was divided into three 
subsets for model development and evaluation. 

The training set, comprising 70% of the data, was 
used for model learning. The validation set, with 
15% of the data, served to tune model hyper-
parameters and prevent overfitting during 
training, particularly for ANNs. The testing set, 
also 15% of the data, was reserved for an 
unbiased evaluation of the final model's 
performance on new data. Random partitioning 
ensured representative subsets. Indices for these 
sets are trainInd, valInd, and testInd. 

 (𝑥𝑛𝑜𝑟𝑚,𝑖 , 𝑦𝑛𝑜𝑟𝑚,𝑖),    𝑖 = 1,2, … , 𝑁 (2) 

Where 𝑥𝑛𝑜𝑟𝑚,𝑖 and 𝑦𝑛𝑜𝑟𝑚,𝑖  are column vectors 

representing the 𝑖 − 𝑡ℎ  normalized input and 
output samples, respectively. 
 
The splitting process can be formally expressed 
as: 
 

Data Points = {(𝑥𝑛𝑜𝑟𝑚,𝑖 , 𝑖 , 𝑦𝑛𝑜𝑟𝑚,𝑖) | 𝑖 = 1, . . . , 𝑁} (3) 

Training Set = {(𝑥𝑛𝑜𝑟𝑚,𝑖 , 𝑖, 𝑦𝑛𝑜𝑟𝑚,𝑖) | 𝑖 ∈  𝑡𝑟𝑎𝑖𝑛𝐼𝑛𝑑 } (4) 

Validation Set = {(𝑥𝑛𝑜𝑟𝑚,𝑖 , 𝑖, 𝑦𝑛𝑜𝑟𝑚,𝑖) | 𝑖 ∈  𝑣𝑎𝑙𝐼𝑛𝑑 } (5) 

Testing Set = {(𝑥𝑛𝑜𝑟𝑚,𝑖, 𝑖, 𝑦𝑛𝑜𝑟𝑚,𝑖) | 𝑖 ∈  𝑡𝑒𝑠𝑡𝐼𝑛𝑑 } (6) 

 
Artificial Neural Networks (ANN) 
 
A feed-forward backpropagation ANN 
architecture was employed for compressive 
strength prediction. This type of network 
consists of an input layer, one or more hidden 
layers, and an output layer. 
 Architecture: A single hidden layer with 10 

neurons was selected after experimentation. 
The network structure can be represented as 
4-10-1, corresponding to 4 input features, 10 
hidden neurons, and 1 output (compressive 
strength) and 1 output (compressive 
strength). 

 Activation Functions: The 𝑡𝑎𝑛𝑠𝑖𝑔 (hyperbolic 
tangent sigmoid) transfer function was used 
for the hidden layer, providing non-linearity 
crucial for learning complex relationships. A 
𝑝𝑢𝑟𝑒𝑙𝑖𝑛 (linear) transfer function was used 
for the output layer, suitable for regression 
tasks. 

 Hidden Layer Output: For a neuron j in the 
hidden layer with inputs xᵢ from the input 
layer: 

 ℎ𝑗 =  𝑡𝑎𝑛ℎ ∑ 𝑤𝑖𝑗
(1)

 𝑥𝑖  + 𝑏𝑗
1𝑛𝑖𝑛𝑝𝑢𝑡𝑠

𝑖=1
 (7) 
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Where 𝑛𝑖𝑛𝑝𝑢𝑡𝑠= 4 is the number of input features, 

𝑤𝑖𝑗⁽¹⁾are the weights connecting input i to hidden 

neuron j, and 𝑏𝑗
(1)

 is the bias for hidden neuron j. 

 Output Layer Output: For the output neuron: 

 𝑦𝑝𝑟𝑒𝑑,𝑛𝑜𝑟𝑚 =  ∑ 𝑤𝑗⁽²⁾   ℎ𝑗  + 𝑏⁽²⁾
𝑛ℎ𝑖𝑑𝑑𝑒𝑛
𝑖=1  (8) 

Where 𝑛ℎ𝑖𝑑𝑑𝑒𝑛 =  10 the number of hidden 
neurons is, 𝑤𝑗⁽²⁾ are the weights connecting 

hidden neuron j to the output, and b⁽²⁾ is the bias 
for the output neuron. 
 Training Algorithm: The Bayesian 

Regularization backpropagation algorithm 
( 𝑡𝑟𝑎𝑖𝑛𝑏𝑟 ) was utilized. This algorithm is 
robust for small to medium-sized datasets, 
often leading to better generalization by 
preventing overfitting through 
regularization. It updates weights and biases 
according to Levenberg-Marquardt 
optimization and minimizes a combination of 
squared errors and weights. The 
performance function minimized by 
𝑡𝑟𝑎𝑖𝑛𝑏𝑟 is: 

 𝐹(𝑤) =  𝛽𝐸𝐷(𝑤)  +  𝛼𝐸𝑤(𝑤)  (9) 

Where: 

𝐸𝐷(𝑤)  =  ∑ (𝑦𝑛𝑜𝑟𝑚𝑘 −  𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑛𝑜𝑟𝑚𝑘
𝑁𝑡𝑟𝑎𝑖𝑛
𝑘=𝑖 )2 (10) 

 𝐸𝑤(𝑤)  =  ∑ 𝑤𝑖
2

𝑖  (11) 

 Training Parameters: The model training 
process was configured with the following 
key parameters: a maximum limit of 1000 
epochs was set for the training iterations. The 
performance objective for the model was 
defined by a Mean Squared Error (MSE) goal 
of 1×10−5.  

 
Adaptive Neuro-Fuzzy Inference System 
(ANFIS) 
 
ANFIS functions as a hybrid intelligent system by 
combining the adaptive learning capabilities of 
Artificial Neural Networks (ANNs) with the rule-
based interpretability of Fuzzy Inference Systems 
(FIS). For this study, a first-order Sugeno-type FIS 
was implemented. An initial FIS structure was 
generated from the training data using the grid 

partitioning method, specifically via the 𝑔𝑒𝑛𝑓𝑖𝑠1 
function in MATLAB. The ANFIS model was 
trained for 100 epochs. 
 Membership Functions (MFs): For each input 

variable, three membership functions were 
assigned. Gaussian bell-shaped membership 

functions  (𝑔𝑏𝑒𝑙𝑙𝑚𝑓 ) were selected as the 
input MF type due to their smooth and 
differentiable properties, which are 
beneficial for gradient-based learning 
algorithms. The generalized bell-shaped 
membership function for a given input x and 
parameters a, b, and c is defined as: 

 μ(x; a, b, c)  =  
1

1+ |
𝑥−𝑐

𝑎
|
2𝑏 (12) 

Here, a controls the width, b controls the slope, 
and c defines the center of the membership 
function. 
 Output MF Type: Linear membership 

functions (linear) were used, meaning the 
output of each rule is a linear combination of 
the inputs. For a rule k: 

 fk = pkMK + qkSD + rkS + skCD + tk     (13) 

Where pk, qk, rk, sk, and tk are consequent 
parameters optimized during training. 
 Training Algorithm: The ANFIS function 

employs a hybrid learning algorithm. This 
algorithm combines the least-squares 
method to optimize the consequent 
parameters and the gradient descent method 
to optimize the premise parameters 
(Membership Function parameters). 
o Rule Firing Strength Calculation 

For a given set of normalized inputs  X𝑛𝑜𝑟𝑚 =
 [MK𝑛𝑜𝑟𝑚, SD𝑛𝑜𝑟𝑚, S𝑛𝑜𝑟𝑚, CD𝑛𝑜𝑟𝑚]  , the firing 
strength of each rule k, denoted as   𝑤𝑘 , is 
computed as the product of the membership 
degrees of the inputs to their respective 
membership functions: 

𝑤𝑘 =  𝜇𝑀𝐾, 𝑘(MK𝑛𝑜𝑟𝑚) × 𝜇𝑆𝐷, 𝑘(SD𝑛𝑜𝑟𝑚) × 𝜇𝑆, 𝑘
(S𝑛𝑜𝑟𝑚) × 𝜇𝐶𝐷, 𝑘(CD𝑛𝑜𝑟𝑚)                                            (14) 

o Normalized Firing Strength 
The normalized firing strength  𝑘, for each rule 
k is calculated by dividing its firing strength by 
the sum of the firing strengths of all rules: 

 𝑘 =  
𝑤𝑘

∑ 𝑤𝑗
𝑁𝑟𝑢𝑙𝑒𝑠
𝑗=𝑖

 (15) 

Where 𝑁𝑟𝑢𝑙𝑒𝑠 is the total number of fuzzy rules. 

 Overall Output: The final ANFIS predicted 
output, 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑛𝑜𝑟𝑚, is the weighted average 

of the individual rule outputs: 

 𝑦
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑛𝑜𝑟𝑚 = ∑ 𝑘 

𝑁𝑟𝑢𝑙𝑒𝑠
𝑘=𝑖

.𝑓𝑘
 (16) 

Where 𝑓𝑘 is the output of rule k. 
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Gene Expression Programming (GEP) 
 
Gene Expression Programming (GEP) is an 
evolutionary algorithm designed to discover 
explicit mathematical expressions or computer 
programs. In contrast to opaque models 
generated by ANNs and ANFIS, GEP aims to 
produce clear mathematical equations that 
define the relationship between input and output 
variables. 
 
For model initialization, the GEP module 
( 𝑔𝑝𝑙𝑒𝑎𝑟𝑛. 𝑔𝑒𝑛𝑒𝑡𝑖𝑐. 𝑆𝑦𝑚𝑏𝑜𝑙𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟 ) in 
Python was utilized to implement the GEP 
algorithm. The population size for each 
generation was set to 5000 individuals 
(programs), and the evolutionary process 
spanned 20 generations. A predefined function 
set, including elementary mathematical 
operations such as addition (add), subtraction 
(sub), multiplication (𝑚𝑢𝑙), division (div), square 
root ( 𝑠𝑞𝑟𝑡 ), natural logarithm2 (log), absolute 
value (abs), and negation(𝑛𝑒𝑔 ), was provided. 
The GEP algorithm constructs expressions by 
combining these functions with the input 
variables. Mean Squared Error (MSE) served as 
the fitness function, guiding the evolutionary 
process by measuring model performance. A 
parsimony coefficient of 0.01 was applied to 
penalize overly complex models, thereby 
promoting the evolution of simpler, more 
interpretable expressions. GEP's evolutionary 
process incorporates genetic operators like 
mutation, recombination, and transposition to 
refine programs across generations, 
continuously improving their fitness by 
minimizing MSE. The objective is to identify a 
mathematical expression f (MK, SD, S, CD) such 
that: 

 𝐶𝑆𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =  f (MK, SD, S, CD)  (17) 

The final evolved equation represents the 
outcome of this optimization process. The model 
was trained using the normalized training data to 
uncover the inherent mathematical relationship. 
 
Evaluation Metrics 
 
Model performance was quantitatively assessed 
using widely accepted metrics as given by Ozioko 
and Eze [16] and represented by Eqs. 18-21. 
 
 
 

Mean Squared Error (MSE): 

 MSE = 
1

𝑛
 ∑ (𝑛

𝑖=0 yᵢ - ŷᵢ)2 (18) 

Root Mean Squared Error (RMSE):  

 RMSE = √𝑀𝑆𝐸 (19) 

Mean Absolute Error (MAE): 

 𝑀𝐴𝐸 =  (
1

𝑛
) ∑ |𝑦𝑖 −  ŷᵢ|𝑛

𝑖=0  (20) 

R-squared (R2): 

 R2 = 1−
1

𝑛
 ∑ (𝑛

𝑖=0 𝑦ᵢ − ŷᵢ)2

1

𝑛
 ∑ (𝑛

𝑖=0 𝑦ᵢ − ȳ)2
 (21) 

Where: yᵢ represents the i-th actual (observed) 
value, ŷᵢ represents the i-th predicted value, ȳ 
represents the mean of the actual (observed) 
values and N represents the total number of data 
points. 
 
3. RESULTS AND DISCUSSION 
 
3.1 Material Characterization 
 
The physical properties and gradation profiles of 
the materials used are summarized in Table 1. 
Metakaolin and sawdust exhibited low densities 
(740 kg/m³ and 215.3 kg/m³, respectively) and 
high porosity, particularly sawdust, which 
showed a water absorption of 31.2%. Granite and 
sand displayed typical aggregate characteristics 
with higher densities and lower moisture 
contents. The particle size distribution curves 
presented in Fig. 2 illustrate the grading behavior 
of the materials. Granite showed a gap-graded 
profile with a Coefficient of Uniformity (Cu) of 
1.84 and Coefficient of Curvature (Cc) of 0.68, 
indicating poor gradation. Sand, in contrast, was 
well-graded with Cu and Cc values of 20.35 and 
0.72, respectively. Metakaolin and sawdust, 
though non-aggregates, exhibited moderate 
gradation (Cu = 12.63 and 10.00), suggesting a 
wide range of fine particles. 
 
The weighing of metakaolin and sawdust prior to 
mixing is shown in Fig. 3, highlighting the use of 
an electronic balance for precise measurement. 
This ensures consistency in mix design and 
material batching. Properties of the alkaline 
activators used in the geopolymer system are 
detailed in Table 2. A 10 M NaOH solution and 
commercial-grade sodium silicate (SiO₂/Na₂O 
ratio = 3.22) were combined in a 40:60 weight 
ratio to facilitate effective geopolymerization. 
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Table 1. Material Properties and Particle Size 
Distribution. 

Property Metakaolin Sawdust Granite Sand 

Density 
(kg/m³) 

740.0 215.3 2665.0 1652.4 

Bulk 
Density 
(kg/m³) 

980.1 139.0 1512.3 1548.7 

Specific 
Gravity 

2.52 0.62 2.68 2.59 

Moisture 
Content 

(%) 
0.5 8.1 0.3 1.5 

Water 
Absorption 

(%) 
– 31.2 0.8 1.1 

Particle Size Distribution (% Passing) 

Sieve Size     

20.0 mm – – 100.0 – 

14.00mm _ _ 92.5 _ 

10.0 mm – – 89.5 _ 

6.3mm _  55.4 _ 

4.75 mm – – 8.2 89.5 

2.36 mm 92.6 94.8 1.3 74.7 

1.18 mm 81.4 87.5 0.6 60.3 

600 µm 66.2 73.1 0.0 46.1 

300 µm 49.7 59.6 0.0 33.4 

150 µm 31.5 45.4 0.0 21.2 

0.075 mm 9.3 25.8 – – 

Pan     

 
Table 2. Material Properties of Alkaline Activators. 

Property 
Sodium 

Hydroxide 
(NaOH) 

Sodium Silicate 
(Na₂SiO₃) 

Physical Form 
White pellets 

(solid) 
Viscous liquid 

(gel-like) 

Concentration 
Used 

10 M (molar) 
Commercial-
grade, 3.22 

SiO₂/Na₂O ratio 

Density (kg/m³) 
~1310 (10M 

solution at 
25 °C) 

1510 

Specific Gravity 1.31 1.51 

Viscosity @ 25°C – 400 – 600 mPa·s 

pH (at 25°C) 13.5 – 14.0 ~11.3 

Water Content (%) 
~70 (in 
solution 

form) 
~55 

Mixing Ratio 
(NaOH:Na₂SiO₃ by 

wt.) 
40:60 40:60 

 
Fig. 2. Gradation Characteristics of the Materials. 

 

 
Fig. 3. Metakaolin and Sawdust being measured. 

 
3.2 Workability of Fresh Geopolymer 

Concrete 
 
The results presented in Table 3 consistently 
show that an increase in sawdust replacement 
percentage leads to a notable decrease in the 
workability of fresh geopolymer concrete mixes. 
The control mix (0% sawdust) exhibited a high 
slump of 172 mm, indicating excellent 
flowability. As sawdust content increased, the 
slump values progressively reduced, with mixes 
containing 30% and 40% sawdust exhibiting zero 
slump. This phenomenon is largely attributed to 
the high-water absorption capacity of sawdust 
(31.2%, as indicated in Table 2), which 
significantly reduces the free water available for 
lubrication within the mix. Furthermore, the 
irregular, fibrous nature and relatively large 
surface area of sawdust particles, even after 
sieving to 1.18 mm as per the methodology, likely 
increase the internal friction and inter-particle 
resistance, thereby impeding the flow and 
compaction of the fresh concrete. 
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Table 3. Slump Test Results for Metakaolin-Sawdust 
Geopolymer Concrete. 

Mix ID 
Metakaolin 

(%) 

Sawdust 

(%) 

Slump 

(mm) 

Description 

of 
Workability 

Control 
(0% 
SD) 

100 0 172 
High 

workability 

GPC-
SD4 

96 4 164 
Moderate-

high 
workability 

GPC-
SD7 

93 7 155 
Moderate 

workability 

GPC-
SD10 

90 10 137 
Moderate 

workability 

GPC-
SD13 

87 13 105 
Low-

moderate 
workability 

GPC-
SD15 

85 15 78 
Low 

workability 

GPC-
SD20 

80 20 56 
Very low 

workability 

GPC-
SD22 

78 22 33 
Extremely 

low 
workability 

GPC-
SD25 

75 25 14 
Nearly no 

slump 

GPC-
SD30 

70 30 0 Zero slump 

GPC-
SD40 

60 40 0 Zero slump 

 
These findings align with previous research on 
the influence of sawdust on concrete workability. 
For instance, Duan et al. [4] observed that 
sawdust addition inversely influences the 
workability of fly ash geopolymer paste. 
Similarly, Oyedepo et al. [17] reported a decrease 
in workability (slump values of 40 mm, 9 mm, 
and 5 mm for 0%, 25%, and 50% sawdust as 
partial replacement for fine sand in OPC concrete, 
respectively), which is consistent with the trend 
observed in the present study. Although their 
study used sawdust as a sand replacement in OPC 
concrete, the underlying principle of sawdust's 
high absorbency and irregular shape impacting 
fresh properties holds true for geopolymer 
systems. Onyechere et al. [18], in their review on 
sawdust ash in concrete, also generally noted a 
reduction in concrete workability as sawdust ash 
content increases, reinforcing the idea that 
sawdust-derived materials tend to absorb water 
and stiffen the mix. 
 

While the exact slump values vary between 
studies due to differences in mix proportions, 
binder types (geopolymer vs. OPC), sawdust 
characteristics, and experimental procedures, the 
general trend of reduced workability with 
increased sawdust content is consistently 
reported. The current study's observation of zero 
slump at higher sawdust percentages (30% and 
40%) underscores the significant challenge 
sawdust poses to workability, potentially 
requiring the use of superplasticizers to maintain 
practical consistency for real-world applications, 
as hinted by Ikumapayi et al. [19] who used a 
superplasticizer to enhance properties of 
sawdust ash concrete. This emphasizes that while 
sawdust offers sustainability benefits, its 
application requires careful mix design 
adjustments to ensure adequate workability for 
placement and compaction. Fig. 4 shows the 
slump being measured with a meter rule. 
 

 
Fig. 4. Measuring the slump with meter rule. 

 
3.3 Setting Time of Geopolymer Concrete 
 
The setting time results, as presented in Table 4, 
clearly indicate that the inclusion of sawdust 
significantly prolonged both the initial and final 
setting times of the metakaolin-sawdust 
geopolymer concrete. The control mix (0% 
sawdust) exhibited an initial setting time of 53 
minutes and a final setting time of 143 minutes. 
As the sawdust content increased, these times 
consistently extended. For example, the mix with 
10% sawdust had an initial setting time of 82 
minutes and a final setting time of 193 minutes, 
while the 40% sawdust mix showed substantially 
longer setting times of 242 minutes and 425 
minutes, respectively. 
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Table 4. Initial and Final Setting Times of 
Geopolymer Concrete Mixes. 

Mix ID 
Metakaolin 

(%) 

Sawdust 

(%) 

Initial 

Setting 

Time 

(min.) 

Final 

Setting 

Time 

(min.) 

Control 
(0% SD) 

100 0 53 143 

GPC-SD4 96 4 58 147 

GPC-SD7 93 7 63 174 

GPC-SD10 90 10 82 193 

GPC-SD13 87 13 96 221 

GPC-SD15 85 15 114 247 

GPC-SD20 80 20 140 286 

GPC-SD22 78 22 153 298 

GPC-SD25 75 25 171 330 

GPC-SD30 70 30 213 373 

GPC-SD40 60 40 242 425 

 
This observed retardation in setting is primarily 
attributed to the chemical composition and 
physical properties of sawdust. Sawdust, being a 
lignocellulosic material, contains organic 
compounds such as sugars, cellulose, 
hemicellulose, and lignin. These organic 
constituents can interfere with the 
geopolymerization process by retarding the 
dissolution of aluminosilicate precursors from 
metakaolin or by adsorbing the alkaline 
activators (sodium hydroxide and sodium 
silicate), thereby reducing their effective 
concentration in the mix. Additionally, the high 
water absorption capacity of sawdust (as detailed 
in Table 1) means it competes for the available 
water in the alkaline solution, which can further 
slowdown the chemical reactions critical for 
geopolymer formation and hardening. 
 
While Duan et al. [4] also investigated the fresh 
properties of sawdust-reinforced geopolymer, 
their summary states that 'The sawdust content 
is inversely proportional to the setting time.' This 
specific observation from Duan et al. [4] does not 
align with the current study's findings, which 
consistently demonstrate a direct relationship 
between increasing sawdust content and a 
prolongation of both initial and final setting times 
(i.e., higher sawdust percentages lead to longer 
setting times). Fig. 5 captures the geopolymer 

concrete in its unhardened, malleable phase, 
ready for or just subjected to molding into 
specimens. 
 

    
Fig. 5. Geopolymer Concrete during Mixing and 
Molding. 

 
3.4 Bulk Density and Water Absorption 

Capacity 
 
In the current study (Table 5), the bulk density of 
geopolymer concrete progressively declined 
from 2350 kg/m³ (0% SD) to 1400 kg/m³ (40% 
SD) with increasing sawdust content. Conversely, 
water absorption rose from 3.5% to 25%, 
indicating increasing porosity and reduced 
compactness at higher sawdust proportions. 
These findings align with Mehdi et al. [3], who 
observed that complete replacement of natural 
aggregate with sawdust in FA–GBFS-based 
geopolymer led to a significant reduction in 
weight and improved thermal and acoustic 
properties. Though strength reduced, the 
concrete became more porous and lighter 
supporting the trends in density and water 
absorption observed in this study. 
 
Similarly, Duan et al. [4] reported a linear inverse 
relationship between sawdust content and 
density, confirming that sawdust addition 
increases porosity and reduces compactness. 
They also noted improved shrinkage resistance 
and microstructure refinement at moderate 
additions. Oyedepo et al. [20] and Osei and 
Jackson [21] also documented a steady reduction 
in density with rising sawdust content in OPC-
based mixes. Osei and Jackson [21] quantified 
this with a 17.93% drop in density at 100% 
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replacement, mirroring the lighter concrete 
observed in this study. 
 
Table 5. Bulk Density and Water Absorption of 
Hardened Geopolymer Concrete at 28 Days. 

Mix ID 
Metakaolin 

(%) 

Sawdust 

(%) 

Bulk 
Density 

(kg/m3) 

Water 

Absorption 

(%) 

Control 
(0% SD) 

100 0 2350.0 3.5 

GPC-SD4 96 4 2280.0 4.2 

GPC-SD7 93 7 2210.0 5.1 

GPC-SD10 90 10 2130.0 6.5 

GPC-SD13 87 13 2050.0 8.0 

GPC-SD15 85 15 1970.0 9.5 

GPC-SD20 80 20 1800.0 12.5 

GPC-SD22 78 22 1720.0 14.0 

GPC-SD25 75 25 1650.0 16.0 

GPC-SD30 70 30 1550.0 19.5 

GPC-SD40 60 40 1400.0 25.0 

 
Overall, the current results corroborate existing 
literature that sawdust inclusion reduces bulk 
density and increases water absorption, 
especially beyond 15–20% replacement, making 
it suitable primarily for non-structural or 
lightweight applications where thermal and 
acoustic insulation may be desirable. Fig. 6 
depicts the influence of Sawdust Replacement 
Percentage on the Properties of Geopolymer 
Concrete: (a) Slump, (b) Initial Setting Time, (c) 
Final Setting Time, (d) Bulk Density, and (e) 
Water Absorption. 

 
Fig. 6. Influence of Sawdust Replacement Percentage 
on the Properties of Geopolymer. 

 
3.5 Compressive Strength Results of 

Geopolymer Concrete 
 
The current study (Table 6) and Fig. 7 recorded a 
gradual reduction in compressive strength with 
increasing sawdust content. At 28 days, strength 
dropped from 36.1 MPa (0% SD) to 21.9 MPa 
(15% SD) and further to 3.8 MPa at 40% sawdust 
replacement. In comparison, Mehdi et al. [3] 
found that substituting natural aggregate with 
100% sawdust in FA–GBFS-based geopolymer 
concrete led to an approximate 35% reduction in 
compressive strength, but improved sound 
absorption and thermal performance, 
emphasizing sawdust’s multifunctional impact. 
 
 

 
Table 6. Compressive Strength of Metakaolin-Sawdust Geopolymer Concrete. 

Mix ID Metakaolin (%) Sawdust (%) 7 Days 14 Days 21 Days 28 Days 

Control (0% SD) 100 0 25.2 31.5 34.8 36.1 

GPC-SD4 96 4 23.8 29.7 32.5 33.9 

GPC-SD7 93 7 21.5 27.0 29.8 31.2 

GPC-SD10 90 10 19.3 24.5 27.1 28.5 

GPC-SD13 87 13 17.0 21.8 24.2 25.5 

GPC-SD15 85 15 14.5 18.5 20.8 21.9 

GPC-SD20 80 20 11.2 14.0 16.0 17.2 

GPC-SD22 78 22 9.5 11.8 13.5 14.5 

GPC-SD25 75 25 7.8 9.5 10.8 11.5 

GPC-SD30 70 30 5.0 6.2 7.1 7.5 

GPC-SD40 60 40 2.5 3.1 3.5 3.8 

OPC (for comparison) N/A N/A 20.0 26.0 28.0 30.0 

 
Oyedepo et al. [20] reported compressive 
strengths of 14.15 MPa, 12.96 MPa, and 

11.93 MPa at 25%, 75%, and 100% sawdust 
replacement of sand in OPC concrete, all below 
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the 17 MPa minimum for lightweight structural 
concrete highlighting strength limitations at 
higher replacements. Duan et al. [4] showed that 
sawdust had little effect on compressive strength 
before 14 days, but improved later-age strength 
and microstructure, especially at ≤20% addition, 
which is consistent with the strength gain pattern 
observed in this study after 14 and 28 days. 
Meanwhile, Ezeagu & Agbo-Anike [22] and Osei & 
Jackson [21] reported that increasing sawdust 
content generally reduced workability, density, 
and strength, but recognized its economic and 
environmental potential as a lightweight 
material. Overall, the findings of the current 
study confirm that while sawdust reduces 
strength beyond 15%, moderate inclusion (≤10–
15%) remains viable for lightweight or non-
structural geopolymer applications. 
 

 
Fig. 7. Compressive Strength Results of the Concrete 
Mixes. 

 
3.6 Experimental Data 
 
Table 7 presents the experimental data used for 
training, validating and testing the Artificial 

Intelligence (AI) models used in this study. Fig. 8 
shows the spread of metakaolin content and 
sawdust content in kg/m³, the specific 
percentages used for sawdust replacement, the 
distribution of slump values in mm, the fixed 
curing periods in curing days, and the range of 
measured compressive strength in MPa. The two 
surface plots shown in Fig. 9 are valuable for 
understanding the multivariate relationships 
between key input parameters (Curing Days and 
Sawdust Replacement) and important material 
properties (Slump and Compressive Strength). 
 

 

 
Fig. 9. Surface plots Compressive strength and Slump 
Response. 

 

 
Fig. 8. Histogram Distribution of the Experimental Data. 
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Table 7. Experimental Data (where S.R = Sawdust Replacement and C.S = Compressive Strength). 

Mix ID W/B 
Water 

(kg/m³) 

Metakaolin 

(kg/m³) 

Sawdust 

(kg/m³) 

Sand 

(kg/m³) 

Granite 

(kg/m³) 

Alkaline 

Activators 

(kg/m³) 

S. R 

(%) 

Slump 

(mm) 

Curing 

Days 

C.S 

(MPa) 

Control 0.4 92.5 231.25 0 619.65 832.8 416.4 0 172 7 25.2 

Control 0.4 92.5 231.25 0 619.65 832.8 416.4 0 172 14 31.5 

Control 0.4 92.5 231.25 0 619.65 832.8 416.4 0 172 21 34.8 

Control 0.4 92.5 231.25 0 619.65 832.8 416.4 0 172 28 36.1 

GPC-SD4 0.4 92.5 222 9.25 619.65 832.8 416.4 4 164 7 23.8 

GPC-SD4 0.4 92.5 222 9.25 619.65 832.8 416.4 4 164 14 29.7 

GPC-SD4 0.4 92.5 222 9.25 619.65 832.8 416.4 4 164 21 32.5 

GPC-SD4 0.4 92.5 222 9.25 619.65 832.8 416.4 4 164 28 33.9 

GPC-SD7 0.4 92.5 215.06 16.19 619.65 832.8 416.4 7 155 7 21.5 

GPC-SD7 0.4 92.5 215.06 16.19 619.65 832.8 416.4 7 155 14 27 

GPC-SD7 0.4 92.5 215.06 16.19 619.65 832.8 416.4 7 155 21 29.8 

GPC-SD7 0.4 92.5 215.06 16.19 619.65 832.8 416.4 7 155 28 31.2 

GPC-SD10 0.4 92.5 208.12 23.12 619.65 832.8 416.4 10 137 7 19.3 

GPC-SD10 0.4 92.5 208.12 23.12 619.65 832.8 416.4 10 137 14 24.5 

GPC-SD10 0.4 92.5 208.12 23.12 619.65 832.8 416.4 10 137 21 27.1 

GPC-SD10 0.4 92.5 208.12 23.12 619.65 832.8 416.4 10 137 28 28.5 

GPC-SD13 0.4 92.5 201.19 30.06 619.65 832.8 416.4 13 105 7 17 

GPC-SD13 0.4 92.5 201.19 30.06 619.65 832.8 416.4 13 105 14 21.8 

GPC-SD13 0.4 92.5 201.19 30.06 619.65 832.8 416.4 13 105 21 24.2 

GPC-SD13 0.4 92.5 201.19 30.06 619.65 832.8 416.4 13 105 28 25.5 

GPC-SD15 0.4 92.5 196.56 34.69 619.65 832.8 416.4 15 78 7 14.5 

GPC-SD15 0.4 92.5 196.56 34.69 619.65 832.8 416.4 15 78 14 18.5 

GPC-SD15 0.4 92.5 196.56 34.69 619.65 832.8 416.4 15 78 21 20.8 

GPC-SD15 0.4 92.5 196.56 34.69 619.65 832.8 416.4 15 78 28 21.9 

GPC-SD20 0.4 92.5 185 46.25 619.65 832.8 416.4 20 56 7 11.2 

GPC-SD20 0.4 92.5 185 46.25 619.65 832.8 416.4 20 56 14 14 

GPC-SD20 0.4 92.5 185 46.25 619.65 832.8 416.4 20 56 21 16 

GPC-SD20 0.4 92.5 185 46.25 619.65 832.8 416.4 20 56 28 17.2 

GPC-SD22 0.4 92.5 180.38 50.88 619.65 832.8 416.4 22 33 7 9.5 

GPC-SD22 0.4 92.5 180.38 50.88 619.65 832.8 416.4 22 33 14 11.8 

GPC-SD22 0.4 92.5 180.38 50.88 619.65 832.8 416.4 22 33 21 13.5 

GPC-SD22 0.4 92.5 180.38 50.88 619.65 832.8 416.4 22 33 28 14.5 

GPC-SD25 0.4 92.5 173.44 57.81 619.65 832.8 416.4 25 14 7 7.8 

GPC-SD25 0.4 92.5 173.44 57.81 619.65 832.8 416.4 25 14 14 9.5 

GPC-SD25 0.4 92.5 173.44 57.81 619.65 832.8 416.4 25 14 21 10.8 

GPC-SD25 0.4 92.5 173.44 57.81 619.65 832.8 416.4 25 14 28 11.5 

GPC-SD30 0.4 92.5 161.88 69.38 619.65 832.8 416.4 30 0 7 5 

GPC-SD30 0.4 92.5 161.88 69.38 619.65 832.8 416.4 30 0 14 6.2 

GPC-SD30 0.4 92.5 161.88 69.38 619.65 832.8 416.4 30 0 21 7.1 

GPC-SD30 0.4 92.5 161.88 69.38 619.65 832.8 416.4 30 0 28 7.5 

GPC-SD40 0.4 92.5 138.75 92.5 619.65 832.8 416.4 40 0 7 2.5 

GPC-SD40 0.4 92.5 138.75 92.5 619.65 832.8 416.4 40 0 14 3.1 

GPC-SD40 0.4 92.5 138.75 92.5 619.65 832.8 416.4 40 0 21 3.5 

GPC-SD40 0.4 92.5 138.75 92.5 619.65 832.8 416.4 40 0 28 3.8 
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3.7 MATLAB Neural Network Training 
Summary 

 
Fig. 10 shows a 3-layer neural network (4-10-1 
architecture) trained with Bayesian 
Regularization to minimize Mean Squared Error. 
After 157 iterations, the model achieved a low 
MSE of 2.37e-05 with no validation failures. A 
gradient of 1.60 and Mu of 0.005 suggest stable 
and effective learning. The setup reflects efficient 
training and strong generalization. 
 

 
Fig. 10. Neural Network Training Progress and 
Configuration in MATLAB. 

 
ANN General Performance 
 
The Artificial Neural Network (ANN) model 
employed in this study exhibited excellent 
predictive performance in estimating the 
compressive strength of geopolymer concrete 
incorporating sawdust and metakaolin. During 
training, the model achieved a coefficient of 
determination (R²) of 0.9982, with a Mean 
Squared Error (MSE) of 0.2632, Root Mean 
Squared Error (RMSE) of 0.5130, and Mean 
Absolute Error (MAE) of 0.3462. These values 
indicate a highly accurate fit to the training data, 
demonstrating the model’s ability to capture the 
complex nonlinear relationships among the input 
variables (metakaolin percentage, sawdust 
percentage, and curing days). In the testing 
phase, the ANN maintained strong generalization 
capabilities, achieving an R² of 0.9423, MSE of 
2.1898, RMSE of 1.4798, and MAE of 1.2297. 
Although the error metrics were slightly higher 
compared to the training phase, the model still 
delivered reliable predictions on unseen data. 
The relatively small difference between training 
and testing R² values suggests that overfitting 

was effectively minimized. Furthermore, the 
network architecture, consisting of three input 
neurons, ten hidden neurons, and one output 
neuron, proved to be suitably optimized for the 
dataset. The use of the Levenberg-Marquardt 
algorithm during training contributed to the 
model’s rapid convergence and high accuracy. 
Overall, the ANN model outperformed the ANFIS 
and GEP model (presented in my colleagues 
work) in terms of generalization and error 
metrics, confirming its suitability as a robust and 
reliable predictive tool for compressive strength 
modeling in geopolymer concrete systems. 
 
Model Prediction Accuracy across Data Sets 
 
Fig. 11 presents four scatter plots illustrating the 
performance of a predictive model across 
different data sets: training, validation, test, and 
all combined. Each plot shows predicted values 
versus actual target values with a regression line 
and accompanying equation. The high correlation 
coefficients (close to 0.999) and slope values near 
1 indicate strong linear alignment and minimal 
prediction error, confirming that the model 
performs consistently and accurately, not just on 
the data it was trained on, but also on unseen 
data. This reinforces its generalization capability 
and reliability. 
 

 
Fig. 11. Regression Analysis of Model Performance 
across Data Sets. 

 
Model Error Distribution across Datasets 
 
Fig. 12 illustrates the distribution of prediction 
errors and differences between targets and 
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outputs, across training, validation, and test sets 
using a 20-bin histogram. The dominant 
clustering of errors near zero, indicated by the 
height of bars around the center and the orange 
marker at zero error, signals strong model 
accuracy overall. The presence of slightly wider 
error margins in the validation and test sets, 
compared to training, hints at potential 
generalization gaps that may warrant attention. 
Color coding enhances interpretability: blue for 
training, green for validation, and red for test 
data. Overall, the error pattern supports the 
model's predictive reliability, while also guiding 
future improvements to minimize deviation and 
reinforce robustness across datasets. 
 

 
Fig. 12. Error Distribution with 20 Bins. 

 
ANN Training Dynamics and Convergence 
Behavior 
 
Fig. 13 shows the ANN training process over 157 
epochs. The gradient reduced to 2.3584e-05, 
indicating convergence. The mu value increased 
only at the final epoch, showing stable learning. 
The number of parameters stabilized at 15.937, 
while the sum of squared weights (ssX) settled at 
5.1855, confirming weight stability. No validation 
checks occurred, indicating consistent 
generalization and no overfitting. 
 
ANN Model Error Performance Evaluation 
 
Fig. 14 illustrates the Mean Squared Error (MSE) 
during training, validation, and testing over 157 
epochs. The best validation performance of 
0.00016768 was achieved at epoch 156, showing 
excellent model generalization. The validation 
and test curves closely follow each other, 

indicating minimal overfitting. The early and 
sharp drop in MSE confirms fast learning, while 
the final convergence near the minimum value 
highlights training stability and good predictive 
accuracy. 
 

 
Fig. 13. ANN Training Metrics over 157 Epochs. 

 

 
Fig. 14. ANN Training, Validation, and Test MSE 

Performance Curve. 

 
ANN-Based Prediction of Compressive 
Strength Response to Material Variation 
 
Fig. 15 presents a 3D surface plot showing the 
ANN-predicted compressive strength of 
geopolymer concrete at 28 days as a function of 
sawdust replacement (%) and metakaolin 
content (kg/m³), with slump held constant at 
83.1 mm. The compressive strength increases 
with higher metakaolin content and decreases as 
sawdust replacement rises. This trend reflects 
the strengthening role of metakaolin and the 
diluting effect of sawdust, aligning with the 
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experimental observations. The smooth gradient 
confirms the ANN model’s strong predictive 
capacity across the input variables. 
 

 
Fig. 15. ANN Surface Plot of Predicted Compressive 
Strength at 28 Days (Slump = 83.1 mm). 

3.8 Adaptive Neuro Fuzzy Inference System 
(ANFIS) 

 
Fig. 16 details the ANFIS Model architecture and 
parameters, displaying a Sugeno-type system 
with its three inputs, single output, and specific 
fuzzy operators. Complementing this, the Figure 
also shows the Fuzzy Inference System Rule 
Viewer, which visually traces the ANFIS's 
inference for given inputs (all 0.5), showing rule 
activation and the derivation of the crisp output 
(0.506). Together, these figures comprehensively 
illustrate both the design and the detailed 
operational mechanics of the ANFIS model. 
 
 
 
 
 

 

 
Fig. 16. ANFIS Model Architecture and Inference Process. 

 
ANFIS General Performance 
 
The Adaptive Neuro Fuzzy Inference System 
(ANFIS) was implemented using 30 training data 

pairs and 7 checking (testing) data pairs to model 
the relationship between the selected input 
variables and the output. The model architecture 
consisted of 193 nodes, 405 linear parameters, 36 
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nonlinear parameters, totaling 441 modifiable 
parameters, and a complex rule base made up of 
81 fuzzy rules. A warning was issued indicating 
that the number of training data points was lower 
than the number of parameters, suggesting a 
potential risk of overfitting. This concern was 
reflected in the training performance expressed 
in Fig., where the model achieved a perfect 
goodness of fit with an R² value of 1.0000 and 
zero errors across the MSE, RMSE, and MAE 
metrics. This result indicates that the model fit 
the training data exceptionally well, possibly 
memorizing it rather than learning generalized 
patterns. 
 
However, the performance on the checking (test) 
set provided a more realistic measure of 
generalization capability. The testing results 
showed an R² of 0.7584, MSE of 12.1267, RMSE of 
3.4823, and MAE of 2.0608 (Fig. 17). These values 
suggest that although the model still performs 
fairly well on unseen data, the accuracy drops 
noticeably compared to the training set, 
confirming the initial concern about overfitting 
due to the high number of parameters relative to 
available data. Additionally, the training process 
displayed progressive learning, with the step size 
increasing steadily over epochs from 0.0110 after 
epoch 5 to 0.0214 after epoch 36, indicating 
stable convergence behavior. 
 

 

 
Fig. 17. ANFIS Parity Plots. 

Nevertheless, the generated 3D surface plots 
represented by Fig. 20 provide meaningful 
visualization of the interactions between input 
variables and their influence on the predicted 
output. In overall, the ANFIS model demonstrated 
excellent performance on training data and 
acceptable generalization on the testing set, but 
improvements could be made by simplifying the 
model structure or increasing the dataset size to 
enhance robustness and reduce overfitting. 
 
ANFIS Model Error Analysis and Membership 
Functions 
 
Fig. 18 displays histograms of ANFIS prediction 
errors (Actual - Predicted) for both training (left) 
and testing (right) datasets, with a superimposed 
normal distribution curve. Both plots show 
errors largely centered around zero, indicating 
accurate model predictions for both seen and 
unseen data. The distributions highlight the 
model's performance and generalization ability. 
Fig. 19 shows provides the input membership 
functions, each variable is characterized by three 
fuzzy sets (e.g., low, medium, high), and 
indicating the degree of belongingness for values 
within a 0-1 normalized range. 
 

 

 
Fig. 18. ANFIS Prediction Error Distribution. 
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Fig. 19. Input Membership Functions. 

 

 
Fig. 20. ANFIS 3D Surface Plots. 

 
3.9 Performance Evaluation of GEP Model 

Training 
 
The Gene Expression Programming (GEP) model 
was trained over 20 generations, showing rapid 

convergence to an optimal solution. Initially, both 
the population average fitness and the best 
individual fitness improved significantly from 
generation 0 to 1, with best fitness reducing from 
0.00449 to 0.00397. By generation 6, a consistent 
minimum fitness value of 0.0136981 was 
achieved and maintained across subsequent 
generations, indicating convergence and model 
stability. The chromosome length of the best 
individual also stabilized at 1, showing that the 
model had minimized redundancy and 
complexity while preserving predictive accuracy. 
Table 8 shows the evolution of fitness and 
chromosome length during GEP training. 
 
GEP Model Performance Discussion 
 
The Gene Expression Programming (GEP) model 
exhibited moderate-to-good predictive 
performance across the training and testing 
phases. On the training set, the model achieved an 
R² of 0.8354, indicating that approximately 
83.5% of the variance in compressive strength is 
captured by the evolved expression. 
Correspondingly, the Root Mean Squared Error 
(RMSE) and Mean Absolute Error (MAE) values 
were 3.93 MPa and 3.20 MPa, respectively, 
suggesting reasonably low deviation between 
predicted and actual values. 

 
Table 8. Evolution of Fitness and Chromosome Length during GEP Training. 

Generation 
Avg. Chromosome 

Length 
Avg. Fitness 

Best 

Chromosome Length 
Best Fitness 

OOB 

Fitness 

Time 

Left 

0 11.88 164249 9 0.00449082 N/A 1.72m 

1 4.53 2.40773 10 0.00396707 N/A 1.23m 

2 1.73 0.0574911 5 0.00823218 N/A 1.45m 

3 1.04 0.0828585 6 0.013697 N/A 1.02m 

4 1.03 0.234424 7 0.008207 N/A 1.00m 

5 1.03 0.232288 1 0.0136981 N/A 1.22m 

6 1.05 0.0310682 1 0.0136981 N/A 50.40s 

7 1.04 0.0272813 1 0.0136981 N/A 1.13m 

8 1.04 0.211432 1 0.0136981 N/A 45.94s 

9 1.03 0.0303183 1 0.0136981 N/A 37.32s 

10 1.04 0.0261529 1 0.0136981 N/A 37.33s 

11 1.03 0.0251979 1 0.0136981 N/A 37.47s 

12 1.03 0.0329538 1 0.0136981 N/A 28.43s 

13 1.04 2.99697 1 0.0136981 N/A 22.87s 

14 1.03 0.0277006 1 0.0136981 N/A 25.06s 

15 1.05 0.576413 1 0.0136981 N/A 15.30s 

16 1.04 0.122667 1 0.0136981 N/A 12.23s 

17 1.04 0.0306872 1 0.0136981 N/A 10.40s 

18 1.03 0.0288972 1 0.0136981 N/A 3.81s 

19 1.04 0.108793 1 0.0136981 N/A 0.00s 
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However, on the testing set, the performance 
slightly declined with an R² of 0.6532, showing 
that the model explains around 65.3% of the 
variation in unseen data. The RMSE and MAE 
increased to 5.69 MPa and 4.31 MPa, respectively, 
which indicates a drop in generalization 
accuracy. This reduction in predictive accuracy 
on the test set is common in symbolic regression 
models and may be attributed to overfitting or 
the structural simplicity of the evolved 
expression (X₂, in this case), which might not fully 
capture the nonlinear interactions among all 
variables. The parity plots shown in Fig. 21 
support these findings: training predictions align 
well with actual values, while testing predictions 
show greater scatter. Overall, the model performs 
acceptably but may benefit from further tuning or 
feature expansion. 
 

 

 
Fig. 21. GEP Parity Plots. 

 
GEP Model Error Analysis 
 
Fig. 22 displays histograms of the GEP model's 
prediction errors (Actual - Predicted) for both 
training (left) and testing (right) datasets. The 

errors are broadly distributed, spanning a 
significant range for both sets. The training 
errors show peaks, and the testing errors exhibit 
noticeable peaks away from zero (e.g., around -10 
MPa and between 2.5-5 MPa). This indicates that 
the GEP model's predictions are not consistently 
centered around zero and show a wider, more 
scattered error distribution, particularly for 
unseen data. 
 

 

 
Fig. 22. GEP Prediction Error Distribution. 

 
GEP Model Response Surface Analysis 
 
Fig. 23 (GEP Predicted Compressive Strength, 
Curing Day = 28, Slump = 17.5 mm) visualizes the 
GEP model's predicted compressive strength. It 
shows how strength subtly varies with 
Metakaolin content and Sawdust Replacement 
percentage, holding Curing Day and Slump 
constant. The largely flat surface indicates a 
consistent, albeit low-ranging (5.4-6.4 MPa), 
predicted strength within the shown input ranges 
under these fixed conditions. 
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Fig. 23. GEP 3D Surface plots (GEP Predicted 
Compressive Strength, Curing Day = 28, Slump = 17.5 
mm). 

 
3.10 Model Performance Comparison 
 
This study generally compared Artificial Neural 
Networks (ANN), Adaptive Neuro-Fuzzy 
Inference Systems (ANFIS), and Gene Expression 
Programming (GEP) for predicting geopolymer 
concrete compressive strength, revealing distinct 
characteristics and performance trade-offs. The 
ANN, a robust "black-box" model, demonstrated 
exceptional predictive capability, achieving an R² 
of 0.9982 on the training data and maintaining 
strong generalization with an R² of 0.9423 and an 
RMSE of 1.48 MPa on the unseen testing data, 
effectively minimizing overfitting. In contrast, the 
ANFIS, a complex hybrid system, perfectly fit the 
training data with an R² of 1.0000 (RMSE 0.00 
MPa), but this indicated significant overfitting, as 
its performance notably declined to an R² of 
0.7584 and an RMSE of 3.48 MPa on the testing 
set. Finally, the GEP model provided highly 
interpretable explicit mathematical expressions, 
yielding an R² of 0.8354 on training. However, it 
exhibited the lowest generalization capability 
among the three, with an R² of 0.6532 and an 
RMSE of 5.69 MPa on the testing data, a likely 
consequence of its evolved simplicity trading off 
some predictive accuracy (see Table 9). Overall, 
while ANFIS and GEP offered varying degrees of 
interpretability, the ANN model proved to be the 
most accurate and reliable predictive tool for this 
specific application due to its superior 
generalization performance. The results of all the 
models are provided in Table 9. 
 
 
 

Table 9. Model metrics comparison. 

Metric Dataset ANN ANFIS GEP 

R² 
Training 0.9982 1.0000 0.8354 

Testing 0.9423 0.7584 0.6532 

MSE 

Training 0.2632 0.0000 
15.4449 

(from RMSE) 

Testing 2.1898 12.1267 
32.3761 

(from RMSE) 

RMSE 
Training 0.5130 0.0000 3.93 

Testing 1.4798 3.4823 5.69 

MAE 
Training 0.3462 0.0000 3.20 

Testing 1.2297 2.0608 4.31 

 
3.11 Practical Application of the study  
 
The metakaolin-sawdust geopolymer concrete 
(MSGC) developed in this study presents diverse 
and valuable applications in real-life engineering 
practices, contingent upon the sawdust content 
and specific project requirements. While higher 
sawdust percentages yield genuinely lightweight 
concrete suitable for non-structural uses, lower 
sawdust inclusions result in materials capable of 
fulfilling structural demands. Specifically, MSGC 
mixes with up to approximately 20% sawdust can 
achieve or exceed the minimum 17 N/mm² 
compressive strength requirement for 
lightweight concrete, with the control mix (0% 
sawdust) notably reaching 36.1 MPa at 28 days, 
surpassing conventional Ordinary Portland 
Cement (OPC) concrete. This makes these mixes 
suitable for structural elements such as beams, 
columns, and slabs, offering a sustainable 
alternative that leverages waste materials. 
Conversely, MSGC with higher sawdust content 
(e.g., 22% to 40%) provides ultra-lightweight 
concrete (densities as low as 1400 kg/m³), which, 
despite lower compressive strengths (falling 
below 17 N/mm²), excels in non-load-bearing 
applications. These include insulating blocks and 
panels, partition walls, and void-filling materials, 
where reduced weight, enhanced thermal 
insulation, and improved acoustic properties are 
highly desirable. It is important to acknowledge 
that the study identified challenges such as 
significant reductions in workability (slump 
decreasing from 172 mm to zero at higher 
sawdust contents) and prolonged setting times, 
which would necessitate careful mix design 
adjustments, potentially including the use of 
superplasticizers, to ensure practical placement 
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and compaction in construction. Fundamentally, 
this research contributes to sustainable 
construction by demonstrating the viability of 
utilizing metakaolin and sawdust as eco-friendly 
alternatives, thereby reducing reliance on virgin 
resources and lowering the industry's carbon 
footprint. Furthermore, the development of a 
highly accurate Artificial Neural Network (ANN) 
model (R²=0.9423) provides engineers with a 
robust tool to predict compressive strength, 
enabling optimized mix designs and more 
efficient resource allocation in practical 
applications. 
 
4. CONCLUSION 
 
This study comprehensively investigated the 
influence of metakaolin and sawdust on the fresh 
and hardened properties of geopolymer concrete, 
alongside developing predictive models for its 
compressive strength. The inclusion of sawdust 
profoundly impacted fresh concrete 
characteristics, with workability (slump) 
consistently decreasing from a high of 172 mm 
for the control mix (0% sawdust) to zero slump 
at 30% and 40% sawdust replacement, primarily 
due to sawdust's high water absorption capacity 
(31.2%). Setting times were significantly 
prolonged by sawdust; initial setting time 
increased from 53 minutes (0% sawdust) to 242 
minutes (40% sawdust), and final setting time 
from 143 minutes to 425 minutes, attributed to 
organic compounds interfering with 
geopolymerization. In the hardened state, an 
inverse relationship was observed between 
sawdust content and bulk density, which 
declined from 2350 kg/m³ (0% sawdust) to 1400 
kg/m³ (40% sawdust), while water absorption 
progressively rose from 3.5% to 25%, indicating 
increased porosity and reduced compactness. 
Regarding compressive strength, a general 
reduction was noted with higher sawdust 
content, decreasing from 36.1 MPa (0% sawdust) 
to 3.8 MPa (40% sawdust) at 28 days. Notably, 
the control mix (0% sawdust) achieved a 
superior 28-day strength (36.1 MPa) compared 
to traditional Ordinary Portland Cement (OPC) 
concrete (30.0 MPa), and mixes with up to 10% 
sawdust (28.5 MPa) remained competitive. 
 
Regarding predictive modeling, Artificial Neural 
Networks (ANN) demonstrated superior 
performance in forecasting compressive 
strength, achieving a coefficient of determination 

(R²) of 0.9423 on the testing dataset, with a Mean 
Squared Error (MSE) of 2.1898 and a Root Mean 
Squared Error (RMSE) of 1.4798. While Adaptive 
Neuro-Fuzzy Inference Systems (ANFIS) showed 
perfect fit on the training data (R² = 1.0000), its 
testing performance (R² = 0.7584) was less 
robust than ANN. Gene Expression Programming 
(GEP) performed the least effectively with a 
testing R² of 0.6532. These quantitative results 
confirm that metakaolin-sawdust geopolymer 
concrete, particularly at lower sawdust inclusion 
rates, offers a viable and high-strength 
sustainable construction material, and ANN 
models are highly effective for its strength 
prediction. 
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